Cargando…

Influence of Compounding Parameters on the Tensile Properties and Fibre Dispersion of Injection-Moulded Polylactic Acid and Thermomechanical Pulp Fibre Biocomposites

Thermomechanical pulp (TMP) fibres can serve as renewable, cost-efficient and lightweight reinforcement for thermoplastic polymers such as poly(lactic acid) (PLA). The reinforcing ability of TMP fibres can be reduced due to various factors, e.g., insufficient dispersion of the fibres in the matrix m...

Descripción completa

Detalles Bibliográficos
Autores principales: Zarna, Chiara, Rodríguez-Fabià, Sandra, Echtermeyer, Andreas T., Chinga-Carrasco, Gary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612247/
https://www.ncbi.nlm.nih.gov/pubmed/36298011
http://dx.doi.org/10.3390/polym14204432
Descripción
Sumario:Thermomechanical pulp (TMP) fibres can serve as renewable, cost-efficient and lightweight reinforcement for thermoplastic polymers such as poly(lactic acid) (PLA). The reinforcing ability of TMP fibres can be reduced due to various factors, e.g., insufficient dispersion of the fibres in the matrix material, fibre shortening under processing and poor surface interaction between fibres and matrix. A two-level factorial design was created and PLA together with TMP fibres and an industrial and recyclable side stream were processed in a twin-screw microcompounder accordingly. From the obtained biocomposites, dogbone specimens were injection-moulded. These specimens were tensile tested, and the compounding parameters statistically evaluated. Additionally, the analysis included the melt flow index (MFI), a dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) and three-dimensional X-ray micro tomography (X- [Formula: see text] CT). The assessment provided insight into the microstructure that could affect the mechanical performance of the biocomposites. The temperature turned out to be the major influence factor on tensile strength and elongation, while no significant difference was quantified for the tensile modulus. A temperature of 180 °C, screw speed of 50 rpm and compounding time of 1 min turned out to be the optimal settings.