Cargando…

Antimicrobial Resistance and Virulence Factors of Proteus mirabilis Isolated from Dog with Chronic Otitis Externa

Otitis externa is among the most prevalent diseases in dogs. If the underlying cause is not addressed, bacterial reinfection becomes frequent, necessitating antibiotic administration for an extended period of time. Prolonged treatment promotes the emergence of antibiotic-resistant bacteria and incre...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Jun, Yang, Myoung-Hwan, Ko, Hyoung-Joon, Kim, Sang-Guen, Park, Chul, Park, Se-Chang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612330/
https://www.ncbi.nlm.nih.gov/pubmed/36297273
http://dx.doi.org/10.3390/pathogens11101215
Descripción
Sumario:Otitis externa is among the most prevalent diseases in dogs. If the underlying cause is not addressed, bacterial reinfection becomes frequent, necessitating antibiotic administration for an extended period of time. Prolonged treatment promotes the emergence of antibiotic-resistant bacteria and increases the risk of their transmission from animals to humans. This study aimed to analyze the antibiotic resistance pattern of the emerging pathogen Proteus mirabilis to identify bacterial virulence and antibiotic selection. Samples were collected from randomly encountered dogs with chronic otitis externa. Thirty-two strains of P. mirabilis were isolated and identified, using MALDI-TOF. The Kirby-Bauer disk diffusion method was used to assess the antibiotic susceptibility of P. mirabilis to 11 antibiotics. The isolates (n = 32) were most resistant to cefazolin (75%), trimethoprim–sulfamethoxazole (72%), chloramphenicol (72%), amoxicillin–clavulanate (63%), ampicillin (59%), cefepime (56%), ciprofloxacin (53%), aztreonam (50%), ceftazidime avibactam (50%), gentamicin (22%), and amikacin (16%). Moreover, 75% of isolates were found to be multidrug-resistant bacteria. P. mirabilis was found to have a high resistance-pattern ratio. Although the exact cause is unknown, continuous antibiotic use is thought to be a major factor. We concluded that antibiotic use must be prudent and selective to prevent antibiotic resistance.