Cargando…

Influence of Composite Thickness on Ultrasonic Guided Wave Propagation for Damage Detection

In this paper, the propagation properties of ultrasonic guided waves (UGWs) in different-thickness composites (i.e., 2, 4 and 9 mm) were critically assessed, and their effectiveness for damage detections and localisations under varying temperatures was demonstrated. A diagnostic film with phased-arr...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Tianyi, Sharif Khodaei, Zahra, Aliabadi, M. H. Ferri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612351/
https://www.ncbi.nlm.nih.gov/pubmed/36298153
http://dx.doi.org/10.3390/s22207799
Descripción
Sumario:In this paper, the propagation properties of ultrasonic guided waves (UGWs) in different-thickness composites (i.e., 2, 4 and 9 mm) were critically assessed, and their effectiveness for damage detections and localisations under varying temperatures was demonstrated. A diagnostic film with phased-array lead zirconate titanate (PZT) transducers based on the ink-jet printing technique was used in the experiments. Initially, the dispersion curves for these composites were compared. Next, the effects of the composite thickness on the A(0) and S(0) mode amplitudes and the group velocity were investigated by active sensing. Next, the behaviours of UGWs under varying temperatures in different-thickness plates were also investigated. Finally, surface-mounted artificial damage and impact damage were detected and located in different composites.