Cargando…
Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction
Being some of the most efficient agents to individually solubilize single-wall carbon nanotubes (SWCNTs), bile salt surfactants (BSS) represent the foundation for the surfactant-based structure sorting and spectroscopic characterization of SWCNTs. In this work, we investigate three BSS in their abil...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612395/ https://www.ncbi.nlm.nih.gov/pubmed/36226764 http://dx.doi.org/10.1039/d2nr03883h |
_version_ | 1784819764993982464 |
---|---|
author | Avramenko, Marina Defillet, Joeri López Carrillo, Miguel Ángel Martinati, Miles Wenseleers, Wim Cambré, Sofie |
author_facet | Avramenko, Marina Defillet, Joeri López Carrillo, Miguel Ángel Martinati, Miles Wenseleers, Wim Cambré, Sofie |
author_sort | Avramenko, Marina |
collection | PubMed |
description | Being some of the most efficient agents to individually solubilize single-wall carbon nanotubes (SWCNTs), bile salt surfactants (BSS) represent the foundation for the surfactant-based structure sorting and spectroscopic characterization of SWCNTs. In this work, we investigate three BSS in their ability to separate different SWCNT chiral structures by aqueous two-phase extraction (ATPE): sodium deoxycholate (DOC), sodium cholate (SC) and sodium chenodeoxycholate (CDOC). The small difference in their chemical structure (just one hydroxyl group) leads to significant differences in their stacking behavior on SWCNT walls with different diameter and chiral structure that, in turn, has direct consequences for the chiral sorting of SWCNTs using these BSS. By performing several series of systematic ATPE experiments, we reveal that, in general, the stacking of DOC and CDOC is more enantioselective than the stacking of SC on the SWCNT walls, while SC has a clear diameter preference for efficiently solubilizing the SWCNTs in comparison to DOC and CDOC. Moreover, combining sodium dodecylsulfate with SC allows for resolving the ATPE sorting transitions of empty and water-filled SWCNTs for a number of SWCNT chiralities. We also show that addition of SC to combinations of DOC and sodium dodecylbenzenesulfonate can enhance separations of particular chiralities. |
format | Online Article Text |
id | pubmed-9612395 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-96123952022-11-07 Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction Avramenko, Marina Defillet, Joeri López Carrillo, Miguel Ángel Martinati, Miles Wenseleers, Wim Cambré, Sofie Nanoscale Chemistry Being some of the most efficient agents to individually solubilize single-wall carbon nanotubes (SWCNTs), bile salt surfactants (BSS) represent the foundation for the surfactant-based structure sorting and spectroscopic characterization of SWCNTs. In this work, we investigate three BSS in their ability to separate different SWCNT chiral structures by aqueous two-phase extraction (ATPE): sodium deoxycholate (DOC), sodium cholate (SC) and sodium chenodeoxycholate (CDOC). The small difference in their chemical structure (just one hydroxyl group) leads to significant differences in their stacking behavior on SWCNT walls with different diameter and chiral structure that, in turn, has direct consequences for the chiral sorting of SWCNTs using these BSS. By performing several series of systematic ATPE experiments, we reveal that, in general, the stacking of DOC and CDOC is more enantioselective than the stacking of SC on the SWCNT walls, while SC has a clear diameter preference for efficiently solubilizing the SWCNTs in comparison to DOC and CDOC. Moreover, combining sodium dodecylsulfate with SC allows for resolving the ATPE sorting transitions of empty and water-filled SWCNTs for a number of SWCNT chiralities. We also show that addition of SC to combinations of DOC and sodium dodecylbenzenesulfonate can enhance separations of particular chiralities. The Royal Society of Chemistry 2022-10-13 /pmc/articles/PMC9612395/ /pubmed/36226764 http://dx.doi.org/10.1039/d2nr03883h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Avramenko, Marina Defillet, Joeri López Carrillo, Miguel Ángel Martinati, Miles Wenseleers, Wim Cambré, Sofie Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction |
title | Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction |
title_full | Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction |
title_fullStr | Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction |
title_full_unstemmed | Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction |
title_short | Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction |
title_sort | variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612395/ https://www.ncbi.nlm.nih.gov/pubmed/36226764 http://dx.doi.org/10.1039/d2nr03883h |
work_keys_str_mv | AT avramenkomarina variationsinbilesaltsurfactantstructureallowtuningofthesortingofsinglewallcarbonnanotubesbyaqueoustwophaseextraction AT defilletjoeri variationsinbilesaltsurfactantstructureallowtuningofthesortingofsinglewallcarbonnanotubesbyaqueoustwophaseextraction AT lopezcarrillomiguelangel variationsinbilesaltsurfactantstructureallowtuningofthesortingofsinglewallcarbonnanotubesbyaqueoustwophaseextraction AT martinatimiles variationsinbilesaltsurfactantstructureallowtuningofthesortingofsinglewallcarbonnanotubesbyaqueoustwophaseextraction AT wenseleerswim variationsinbilesaltsurfactantstructureallowtuningofthesortingofsinglewallcarbonnanotubesbyaqueoustwophaseextraction AT cambresofie variationsinbilesaltsurfactantstructureallowtuningofthesortingofsinglewallcarbonnanotubesbyaqueoustwophaseextraction |