Cargando…
We are not ready yet: limitations of state-of-the-art disease named entity recognizers
BACKGROUND: Intense research has been done in the area of biomedical natural language processing. Since the breakthrough of transfer learning-based methods, BERT models are used in a variety of biomedical and clinical applications. For the available data sets, these models show excellent results - p...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612606/ https://www.ncbi.nlm.nih.gov/pubmed/36303237 http://dx.doi.org/10.1186/s13326-022-00280-6 |
Sumario: | BACKGROUND: Intense research has been done in the area of biomedical natural language processing. Since the breakthrough of transfer learning-based methods, BERT models are used in a variety of biomedical and clinical applications. For the available data sets, these models show excellent results - partly exceeding the inter-annotator agreements. However, biomedical named entity recognition applied on COVID-19 preprints shows a performance drop compared to the results on test data. The question arises how well trained models are able to predict on completely new data, i.e. to generalize. RESULTS: Based on the example of disease named entity recognition, we investigate the robustness of different machine learning-based methods - thereof transfer learning - and show that current state-of-the-art methods work well for a given training and the corresponding test set but experience a significant lack of generalization when applying to new data. CONCLUSIONS: We argue that there is a need for larger annotated data sets for training and testing. Therefore, we foresee the curation of further data sets and, moreover, the investigation of continual learning processes for machine learning-based models. |
---|