Cargando…
A physics-informed neural network to model COVID-19 infection and hospitalization scenarios
In this paper, we replace the standard numerical approach of estimating parameters in a mathematical model using numerical solvers for differential equations with a physics-informed neural network (PINN). This neural network requires a sequence of time instances as direct input of the network and th...
Autores principales: | Berkhahn, Sarah, Ehrhardt, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612630/ https://www.ncbi.nlm.nih.gov/pubmed/36320680 http://dx.doi.org/10.1186/s13662-022-03733-5 |
Ejemplares similares
-
Physics-Informed Neural Networks Integrating Compartmental Model for Analyzing COVID-19 Transmission Dynamics
por: Ning, Xiao, et al.
Publicado: (2023) -
Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
por: Berrone, S., et al.
Publicado: (2023) -
Physically informed artificial neural networks for atomistic modeling of materials
por: Pun, G. P. Purja, et al.
Publicado: (2019) -
Estimating COVID-19-Related Infections, Deaths, and Hospitalizations in Iran Under Different Physical Distancing and Isolation Scenarios
por: Sharifi, Hamid, et al.
Publicado: (2020) -
Equivariant neural networks for inverse problems
por: Celledoni, Elena, et al.
Publicado: (2021)