Cargando…

Lesion Volume in a Bi- or Multivariate Prediction Model for the Management of PI-RADS v2.1 Score 3 Category Lesions

OBJECTIVE: This study aimed at improving the discrimination of Prostate Imaging – Reporting and Data System version 2.1 (PI-RADS v2.1) score 3 suspicious prostate cancer lesions using lesion volume evaluation. MATERIAL AND METHODS: Two hundred five PI-RADS v2.1 score 3 lesions were submitted to tran...

Descripción completa

Detalles Bibliográficos
Autores principales: Martorana, Eugenio, Cristina Aisa, Maria, Grisanti, Riccardo, Santini, Nicola, Maria Pirola, Giacomo, Datti, Alessandro, Gerli, Sandro, Bonora, Alessandra, Burani, Aldo, Battista Scalera, Giovanni, Scialpi, Pietro, Di Blasi, Aldo, Scialpi, Michele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Turkish Association of Urology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612700/
https://www.ncbi.nlm.nih.gov/pubmed/35913442
http://dx.doi.org/10.5152/tud.2022.22038
_version_ 1784819833945194496
author Martorana, Eugenio
Cristina Aisa, Maria
Grisanti, Riccardo
Santini, Nicola
Maria Pirola, Giacomo
Datti, Alessandro
Gerli, Sandro
Bonora, Alessandra
Burani, Aldo
Battista Scalera, Giovanni
Scialpi, Pietro
Di Blasi, Aldo
Scialpi, Michele
author_facet Martorana, Eugenio
Cristina Aisa, Maria
Grisanti, Riccardo
Santini, Nicola
Maria Pirola, Giacomo
Datti, Alessandro
Gerli, Sandro
Bonora, Alessandra
Burani, Aldo
Battista Scalera, Giovanni
Scialpi, Pietro
Di Blasi, Aldo
Scialpi, Michele
author_sort Martorana, Eugenio
collection PubMed
description OBJECTIVE: This study aimed at improving the discrimination of Prostate Imaging – Reporting and Data System version 2.1 (PI-RADS v2.1) score 3 suspicious prostate cancer lesions using lesion volume evaluation. MATERIAL AND METHODS: Two hundred five PI-RADS v2.1 score 3 lesions were submitted to transperineal MRI/TRUS fusion-targeted biopsy. The lesion volumes were estimated on diffusion-weighted imaging sequence and distributed in PI-RADS 3a (LV < 0.5 mL) and PI-RADS 3b (LV ≥ 0.5 mL) subcategories, using a 0.5 mL cutoff value. Data were retrospectively matched with histopathological findings from the biopsy. Assuming that lesions with LV < or ≥ 0.5 mL were respectively not eligible (benign and indolent PCa lesions) or eligible for biopsy (significant PCa lesions), the diagnostic accuracy of lesion volume in determining clinically significant PCa at biopsy was evaluated using a bi- or multivariate model. RESULTS: About 55.1% and 44.9% of lesions were distributed in subcategories 3a and 3b, respectively. The overall PI-RADS score 3 detection rate was 273%. 3.5% (1.95% of total), and 25% (11.7% of total) significant PCa were found in PI-RADS 3a and 3b subcategory, respectively. The method showed 85.2% sensitivity, 61.2% specificity, 25% positive predictive value, and 96.5% negative predictive value and avoided 55.1% of unnecessary biopsies. The diagnostic accuracy in determining significant PCa at biopsy was 73.2% or 86.5% depending on whether lesion volume was used alone or in combination with prostate volume and patient age in a multivariate model. CONCLUSION: 0.5 mL lesion volume cutoff value significantly discriminates fusion-targeted biopsy need in PI-RADS v2.1 score 3 lesions and its diagnostic accuracy improves when it combines with prostate volume and age in a multivariate model.
format Online
Article
Text
id pubmed-9612700
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Turkish Association of Urology
record_format MEDLINE/PubMed
spelling pubmed-96127002022-11-04 Lesion Volume in a Bi- or Multivariate Prediction Model for the Management of PI-RADS v2.1 Score 3 Category Lesions Martorana, Eugenio Cristina Aisa, Maria Grisanti, Riccardo Santini, Nicola Maria Pirola, Giacomo Datti, Alessandro Gerli, Sandro Bonora, Alessandra Burani, Aldo Battista Scalera, Giovanni Scialpi, Pietro Di Blasi, Aldo Scialpi, Michele Turk J Urol Original Article OBJECTIVE: This study aimed at improving the discrimination of Prostate Imaging – Reporting and Data System version 2.1 (PI-RADS v2.1) score 3 suspicious prostate cancer lesions using lesion volume evaluation. MATERIAL AND METHODS: Two hundred five PI-RADS v2.1 score 3 lesions were submitted to transperineal MRI/TRUS fusion-targeted biopsy. The lesion volumes were estimated on diffusion-weighted imaging sequence and distributed in PI-RADS 3a (LV < 0.5 mL) and PI-RADS 3b (LV ≥ 0.5 mL) subcategories, using a 0.5 mL cutoff value. Data were retrospectively matched with histopathological findings from the biopsy. Assuming that lesions with LV < or ≥ 0.5 mL were respectively not eligible (benign and indolent PCa lesions) or eligible for biopsy (significant PCa lesions), the diagnostic accuracy of lesion volume in determining clinically significant PCa at biopsy was evaluated using a bi- or multivariate model. RESULTS: About 55.1% and 44.9% of lesions were distributed in subcategories 3a and 3b, respectively. The overall PI-RADS score 3 detection rate was 273%. 3.5% (1.95% of total), and 25% (11.7% of total) significant PCa were found in PI-RADS 3a and 3b subcategory, respectively. The method showed 85.2% sensitivity, 61.2% specificity, 25% positive predictive value, and 96.5% negative predictive value and avoided 55.1% of unnecessary biopsies. The diagnostic accuracy in determining significant PCa at biopsy was 73.2% or 86.5% depending on whether lesion volume was used alone or in combination with prostate volume and patient age in a multivariate model. CONCLUSION: 0.5 mL lesion volume cutoff value significantly discriminates fusion-targeted biopsy need in PI-RADS v2.1 score 3 lesions and its diagnostic accuracy improves when it combines with prostate volume and age in a multivariate model. Turkish Association of Urology 2022-07-01 /pmc/articles/PMC9612700/ /pubmed/35913442 http://dx.doi.org/10.5152/tud.2022.22038 Text en © Copyright 2022 authors https://creativecommons.org/licenses/by/4.0/ Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Original Article
Martorana, Eugenio
Cristina Aisa, Maria
Grisanti, Riccardo
Santini, Nicola
Maria Pirola, Giacomo
Datti, Alessandro
Gerli, Sandro
Bonora, Alessandra
Burani, Aldo
Battista Scalera, Giovanni
Scialpi, Pietro
Di Blasi, Aldo
Scialpi, Michele
Lesion Volume in a Bi- or Multivariate Prediction Model for the Management of PI-RADS v2.1 Score 3 Category Lesions
title Lesion Volume in a Bi- or Multivariate Prediction Model for the Management of PI-RADS v2.1 Score 3 Category Lesions
title_full Lesion Volume in a Bi- or Multivariate Prediction Model for the Management of PI-RADS v2.1 Score 3 Category Lesions
title_fullStr Lesion Volume in a Bi- or Multivariate Prediction Model for the Management of PI-RADS v2.1 Score 3 Category Lesions
title_full_unstemmed Lesion Volume in a Bi- or Multivariate Prediction Model for the Management of PI-RADS v2.1 Score 3 Category Lesions
title_short Lesion Volume in a Bi- or Multivariate Prediction Model for the Management of PI-RADS v2.1 Score 3 Category Lesions
title_sort lesion volume in a bi- or multivariate prediction model for the management of pi-rads v2.1 score 3 category lesions
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612700/
https://www.ncbi.nlm.nih.gov/pubmed/35913442
http://dx.doi.org/10.5152/tud.2022.22038
work_keys_str_mv AT martoranaeugenio lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT cristinaaisamaria lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT grisantiriccardo lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT santininicola lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT mariapirolagiacomo lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT dattialessandro lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT gerlisandro lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT bonoraalessandra lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT buranialdo lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT battistascaleragiovanni lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT scialpipietro lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT diblasialdo lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions
AT scialpimichele lesionvolumeinabiormultivariatepredictionmodelforthemanagementofpiradsv21score3categorylesions