Cargando…
A new machine learning method for cancer mutation analysis
It is complicated to identify cancer-causing mutations. The recurrence of a mutation in patients remains one of the most reliable features of mutation driver status. However, some mutations are more likely to happen than others for various reasons. Different sequencing analysis has revealed that can...
Autores principales: | Habibi, Mahnaz, Taheri, Golnaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612828/ https://www.ncbi.nlm.nih.gov/pubmed/36251702 http://dx.doi.org/10.1371/journal.pcbi.1010332 |
Ejemplares similares
-
Comprehensive analysis of pathways in Coronavirus 2019 (COVID-19) using an unsupervised machine learning method
por: Taheri, Golnaz, et al.
Publicado: (2022) -
Using informative features in machine learning based method for COVID-19 drug repurposing
por: Aghdam, Rosa, et al.
Publicado: (2021) -
Identification of essential genes associated with SARS-CoV-2 infection as potential drug target candidates with machine learning algorithms
por: Taheri, Golnaz, et al.
Publicado: (2023) -
Topological network based drug repurposing for coronavirus 2019
por: Habibi, Mahnaz, et al.
Publicado: (2021) -
A SARS-CoV-2 (COVID-19) biological network to find targets for drug repurposing
por: Habibi, Mahnaz, et al.
Publicado: (2021)