Cargando…

Intertubular morphometric and ultrastructural testes analyses in mdx mice

Duchenne Muscular Dystrophy (DMD) reproductive alterations and the influence of antioxidant treatments may aid in understanding morphometry testicular quantification. In this context, the aim of the present study was to characterize the intertubular compartment (ITC) morphometry of animal testes in...

Descripción completa

Detalles Bibliográficos
Autores principales: Braz, Janine Karla França da Silva, Gomes, Vilessa Araújo, Siman, Verônica Andrade, da Matta, Sérgio Luís Pinto, Clebis, Naianne Kelly, de Oliveira, Moacir Franco, Assis, Antônio Chaves, Morais, Danielle Barbosa, de Moura, Carlos Eduardo Bezerra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Colégio Brasileiro de Reprodução Animal 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613355/
https://www.ncbi.nlm.nih.gov/pubmed/36313597
http://dx.doi.org/10.1590/1984-3143-AR2021-0124
Descripción
Sumario:Duchenne Muscular Dystrophy (DMD) reproductive alterations and the influence of antioxidant treatments may aid in understanding morphometry testicular quantification. In this context, the aim of the present study was to characterize the intertubular compartment (ITC) morphometry of animal testes in mdx mice supplemented with ascorbic acid (AA). Sixteen mice were used, namely the C57BL/10 (non-dystrophic) and C57BL/10Mdx (dystrophic) lineages, distributed into the following groups: Control (C60), Dystrophic (D60), Control supplemented with AA (CS60), Dystrophic supplemented with AA (DS60). A total of 200 mg/kg of AA were administered to mice for 30 days. Subsequently, the testicles were collected, weighed, and fragmented. The obtained fragments were fixed in Karnovsky's solution (pH 7.2) and embedded in historesin for morphometric and transmission electron microscopy assessments. Leydig cells were hypertrophic in the D60 group, but was reverted by AA supplementation in the DS60 group. The DS60 group also exhibited increased intertubular volume compared to the CS60 group. The ultrastructural images identified multilamellar bodies in dystrophic animals (lipid storage) and telocyte cells (transport substances) in both control and dystrophic animals. Morphometric alterations were, therefore, noted in the intertubular compartment due to Duchenne muscular dystrophy (DMD), with AA administration capable of altering Leydig cells in this condition.