Cargando…
Finger Vein Verification on Different Datasets Based on Deep Learning with Triplet Loss
In this study, deep learning and triplet loss function methods are used for finger vein verification research, and the model is trained and validated between different kinds of datasets including FV-USM, HKPU, and SDUMLA-HMT datasets. This work gives the accuracy and other evaluation indexes of fing...
Autores principales: | Li, Jun, Yang, Luokun, Ye, Mingquan, Su, Yang, Liu, Juntong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613401/ https://www.ncbi.nlm.nih.gov/pubmed/36311254 http://dx.doi.org/10.1155/2022/4868435 |
Ejemplares similares
-
Finger-Vein Verification Based on Multi-Features Fusion
por: Qin, Huafeng, et al.
Publicado: (2013) -
Improving Fingerprint Verification Using Minutiae Triplets
por: Medina-Pérez, Miguel Angel, et al.
Publicado: (2012) -
A deep ensemble learning method for single finger-vein identification
por: Liu, Chongwen, et al.
Publicado: (2023) -
Triplet Deep Hashing with Joint Supervised Loss Based on Deep Neural Networks
por: Li, Mingyong, et al.
Publicado: (2019) -
Combined Fully Contactless Finger and Hand Vein Capturing Device with a Corresponding Dataset
por: Kauba, Christof, et al.
Publicado: (2019)