Cargando…
Spike-Based Approximate Backpropagation Algorithm of Brain-Inspired Deep SNN for Sonar Target Classification
With the development of neuromorphic computing, more and more attention has been paid to a brain-inspired spiking neural network (SNN) because of its ultralow energy consumption and high-performance spatiotemporal information processing. Due to the discontinuity of the spiking neuronal activation fu...
Autores principales: | Liu, Yang, Tian, Meng, Liu, Ruijia, Cao, Kejing, Wang, Ruiyi, Wang, Yadi, Zhao, Wei, Zhou, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613403/ https://www.ncbi.nlm.nih.gov/pubmed/36313052 http://dx.doi.org/10.1155/2022/1633946 |
Ejemplares similares
-
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices
por: Kwon, Dongseok, et al.
Publicado: (2020) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
An Approximation of the Error Backpropagation Algorithm in a
Predictive Coding Network with Local Hebbian Synaptic Plasticity
por: Whittington, James C. R., et al.
Publicado: (2017) -
The adaptation of spike backpropagation delays in cortical neurons
por: Buskila, Yossi, et al.
Publicado: (2013)