Cargando…
Data augmentation with improved regularisation and sampling for imbalanced blood cell image classification
Due to progression in cell-cycle or duration of storage, classification of morphological changes in human blood cells is important for correct and effective clinical decisions. Automated classification systems help avoid subjective outcomes and are more efficient. Deep learning and more specifically...
Autores principales: | Rana, Priyanka, Sowmya, Arcot, Meijering, Erik, Song, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613648/ https://www.ncbi.nlm.nih.gov/pubmed/36302948 http://dx.doi.org/10.1038/s41598-022-22882-x |
Ejemplares similares
-
Imbalanced classification for protein subcellular localization with multilabel oversampling
por: Rana, Priyanka, et al.
Publicado: (2022) -
Estimation of three-dimensional chromatin morphology for nuclear classification and characterisation
por: Rana, Priyanka, et al.
Publicado: (2021) -
Complexity of Products: The Effect of Data Regularisation
por: Angelini, Orazio, et al.
Publicado: (2018) -
An empirical evaluation of sampling methods for the classification of imbalanced data
por: Kim, Misuk, et al.
Publicado: (2022) -
Effects of regularisation priors on dynamic PET Data
por: Caldeira, Liliana, et al.
Publicado: (2014)