Cargando…

Cold air exposure at − 15 °C induces more airway symptoms and epithelial stress during heavy exercise than rest without aggravated airway constriction

PURPOSE: Exposure to cold air may harm the airways. It is unclear to what extent heavy exercise adds to the cold-induced effects on peripheral airways, airway epithelium, and systemic immunity among healthy individuals. We investigated acute effects of heavy exercise in sub-zero temperatures on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Eklund, Linda M., Sköndal, Åsa, Tufvesson, Ellen, Sjöström, Rita, Söderström, Lars, Hanstock, Helen G., Sandström, Thomas, Stenfors, Nikolai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613713/
https://www.ncbi.nlm.nih.gov/pubmed/36053365
http://dx.doi.org/10.1007/s00421-022-05004-3
Descripción
Sumario:PURPOSE: Exposure to cold air may harm the airways. It is unclear to what extent heavy exercise adds to the cold-induced effects on peripheral airways, airway epithelium, and systemic immunity among healthy individuals. We investigated acute effects of heavy exercise in sub-zero temperatures on the healthy airways. METHODS: Twenty-nine healthy individuals underwent whole body exposures to cold air in an environmental chamber at − 15 °C for 50 min on two occasions; a 35-min exercise protocol consisting of a 5-min warm-up followed by 2 × 15 min of running at 85% of VO(2)max vs. 50 min at rest. Lung function was measured by impulse oscillometry (IOS) and spirometry before and immediately after exposures. CC16 in plasma and urine, and cytokines in plasma were measured before and 60 min after exposures. Symptoms were surveyed pre-, during and post-trials. RESULTS: FEV(1) decreased after rest (− 0.10 ± 0.03 L, p < 0.001) and after exercise (− 0.06 ± 0.02 L, p = 0.012), with no difference between trials. Exercise in − 15 °C induced greater increases in lung reactance (X5; p = 0.023), plasma CC16 (p < 0.001) as well as plasma IL-8 (p < 0.001), compared to rest. Exercise induced more intense symptoms from the lower airways, whereas rest gave rise to more general symptoms. CONCLUSION: Heavy exercise during cold air exposure at − 15 °C induced signs of an airway constriction to a similar extent as rest in the same environment. However, biochemical signs of airway epithelial stress, cytokine responses, and symptoms from the lower airways were more pronounced after the exercise trial. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00421-022-05004-3.