Cargando…
Constrained CPD of Complex-Valued Multi-Subject fMRI Data via Alternating Rank-R and Rank-1 Least Squares
Complex-valued shift-invariant canonical polyadic decomposition (CPD) under a spatial phase sparsity constraint (pcsCPD) shows excellent separation performance when applied to band-pass filtered complex-valued multi-subject fMRI data. However, some useful information may also be eliminated when usin...
Autores principales: | Kuang, Li-Dan, Lin, Qiu-Hua, Gong, Xiao-Feng, Zhang, Jianming, Li, Wenjun, Li, Feng, Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613874/ https://www.ncbi.nlm.nih.gov/pubmed/35969549 http://dx.doi.org/10.1109/TNSRE.2022.3198679 |
Ejemplares similares
-
Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition With Spatial Sparsity Constraint
por: Han, Yue, et al.
Publicado: (2022) -
Subspace-constrained approaches to low-rank fMRI acceleration
por: Mason, Harry T., et al.
Publicado: (2021) -
Modeling the Ranked Antenatal Care Visits Using Optimized Partial Least Square Regression
por: Sadiq, Maryam, et al.
Publicado: (2022) -
PEAR: PEriodic And fixed Rank separation for fast fMRI
por: Weizman, Lior, et al.
Publicado: (2017) -
A least-squares-fitting procedure for an efficient preclinical ranking of passive transport across the blood–brain barrier endothelium
por: Jorgensen, Christian, et al.
Publicado: (2023)