Cargando…

Genetically-informed prediction of short-term Parkinson’s disease progression

Parkinson’s disease (PD) treatments modify disease symptoms but have not been shown to slow progression, characterized by gradual and varied motor and non-motor changes overtime. Variation in PD progression hampers clinical research, resulting in long and expensive clinical trials prone to failure....

Descripción completa

Detalles Bibliográficos
Autores principales: Sadaei, Hossein J., Cordova-Palomera, Aldo, Lee, Jonghun, Padmanabhan, Jaya, Chen, Shang-Fu, Wineinger, Nathan E., Dias, Raquel, Prilutsky, Daria, Szalma, Sandor, Torkamani, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613892/
https://www.ncbi.nlm.nih.gov/pubmed/36302787
http://dx.doi.org/10.1038/s41531-022-00412-w
Descripción
Sumario:Parkinson’s disease (PD) treatments modify disease symptoms but have not been shown to slow progression, characterized by gradual and varied motor and non-motor changes overtime. Variation in PD progression hampers clinical research, resulting in long and expensive clinical trials prone to failure. Development of models for short-term PD progression prediction could be useful for shortening the time required to detect disease-modifying drug effects in clinical studies. PD progressors were defined by an increase in MDS-UPDRS scores at 12-, 24-, and 36-months post-baseline. Using only baseline features, PD progression was separately predicted across all timepoints and MDS-UPDRS subparts in independent, optimized, XGBoost models. These predictions plus baseline features were combined into a meta-predictor for 12-month MDS UPDRS Total progression. Data from the Parkinson’s Progression Markers Initiative (PPMI) were used for training with independent testing on the Parkinson’s Disease Biomarkers Program (PDBP) cohort. 12-month PD total progression was predicted with an F-measure 0.77, ROC AUC of 0.77, and PR AUC of 0.76 when tested on a hold-out PPMI set. When tested on PDBP we achieve a F-measure 0.75, ROC AUC of 0.74, and PR AUC of 0.73. Exclusion of genetic predictors led to the greatest loss in predictive accuracy; ROC AUC of 0.66, PR AUC of 0.66–0.68 for both PPMI and PDBP testing. Short-term PD progression can be predicted with a combination of survey-based, neuroimaging, physician examination, and genetic predictors. Dissection of the interplay between genetic risk, motor symptoms, non-motor symptoms, and longer-term expected rates of progression enable generalizable predictions.