Cargando…

Ramp-shaped neural tuning supports graded population-level representation of the object-to-scene continuum

We can easily perceive the spatial scale depicted in a picture, regardless of whether it is a small space (e.g., a close-up view of a chair) or a much larger space (e.g., an entire class room). How does the human visual system encode this continuous dimension? Here, we investigated the underlying ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jeongho, Josephs, Emilie, Konkle, Talia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613906/
https://www.ncbi.nlm.nih.gov/pubmed/36302932
http://dx.doi.org/10.1038/s41598-022-21768-2
Descripción
Sumario:We can easily perceive the spatial scale depicted in a picture, regardless of whether it is a small space (e.g., a close-up view of a chair) or a much larger space (e.g., an entire class room). How does the human visual system encode this continuous dimension? Here, we investigated the underlying neural coding of depicted spatial scale, by examining the voxel tuning and topographic organization of brain responses. We created naturalistic yet carefully-controlled stimuli by constructing virtual indoor environments, and rendered a series of snapshots to smoothly sample between a close-up view of the central object and far-scale view of the full environment (object-to-scene continuum). Human brain responses were measured to each position using functional magnetic resonance imaging. We did not find evidence for a smooth topographic mapping for the object-to-scene continuum on the cortex. Instead, we observed large swaths of cortex with opposing ramp-shaped profiles, with highest responses to one end of the object-to-scene continuum or the other, and a small region showing a weak tuning to intermediate scale views. However, when we considered the population code of the entire ventral occipito-temporal cortex, we found smooth and linear representation of the object-to-scene continuum. Our results together suggest that depicted spatial scale information is encoded parametrically in large-scale population codes across the entire ventral occipito-temporal cortex.