Cargando…
Automation of generative adversarial network-based synthetic data-augmentation for maximizing the diagnostic performance with paranasal imaging
Thus far, there have been no reported specific rules for systematically determining the appropriate augmented sample size to optimize model performance when conducting data augmentation. In this paper, we report on the feasibility of synthetic data augmentation using generative adversarial networks...
Autores principales: | Kong, Hyoun-Joong, Kim, Jin Youp, Moon, Hye-Min, Park, Hae Chan, Kim, Jeong-Whun, Lim, Ruth, Woo, Jonghye, Fakhri, Georges El, Kim, Dae Woo, Kim, Sungwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613909/ https://www.ncbi.nlm.nih.gov/pubmed/36302815 http://dx.doi.org/10.1038/s41598-022-22222-z |
Ejemplares similares
-
Silicone Implant-Based Paranasal Augmentation for Mild Midface Concavity
por: Kim, Joo Hyun, et al.
Publicado: (2016) -
Colonoscopic image synthesis with generative adversarial network for enhanced detection of sessile serrated lesions using convolutional neural network
por: Yoon, Dan, et al.
Publicado: (2022) -
Posterior Estimation Using Deep Learning: A Simulation Study of Compartmental Modeling in Dynamic PET
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
Juvenile Paget's Disease with Paranasal Sinus Aplasia
por: Bae, Ki Beom, et al.
Publicado: (2008) -
Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs
por: Jeon, Yejin, et al.
Publicado: (2021)