Cargando…
Feature generation and contribution comparison for electronic fraud detection
Modern money transfer services are convenient, attracting fraudulent actors to run scams in which victims are deceived into transferring funds to fraudulent accounts. Machine learning models are broadly applied due to the poor fraud detection performance of traditional rule-based approaches. Learnin...
Autores principales: | Ti, Yen-Wu, Hsin, Yu-Yen, Dai, Tian-Shyr, Huang, Ming-Chuan, Liu, Liang-Chih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613914/ https://www.ncbi.nlm.nih.gov/pubmed/36302818 http://dx.doi.org/10.1038/s41598-022-22130-2 |
Ejemplares similares
-
Fraud and fraud detection: a data analytics approach
por: Gee, Sunder
Publicado: (2015) -
The fraud loss for selecting the model complexity in fraud detection
por: Brant, Simon Boge, et al.
Publicado: (2022) -
Fraud Prevention and Detection
por: Stamler, Rodney, et al.
Publicado: (2014) -
Mixed Quantum–Classical Method for Fraud Detection With Quantum Feature Selection
por: Grossi, Michele, et al.
Publicado: (2022) -
Healthcare Fraud: Auditing and Detection Guide
por: Busch, Rebecca
Publicado: (2012)