Cargando…
Some sufficient conditions on hamilton graphs with toughness
Let G be a graph, and the number of components of G is denoted by c(G). Let t be a positive real number. A connected graph G is t-tough if tc(G − S) ≤ |S| for every vertex cut S of V(G). The toughness of G is the largest value of t for which G is t-tough, denoted by τ(G). We call a graph G Hamiltoni...
Autores principales: | Cai, Gaixiang, Yu, Tao, Xu, Huan, Yu, Guidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614090/ https://www.ncbi.nlm.nih.gov/pubmed/36313815 http://dx.doi.org/10.3389/fncom.2022.1019039 |
Ejemplares similares
-
Toughness Condition for a Graph to Be a Fractional (g, f, n)-Critical Deleted Graph
por: Gao, Wei, et al.
Publicado: (2014) -
Efficient solution for finding Hamilton cycles in undirected graphs
por: Alhalabi, Wadee, et al.
Publicado: (2016) -
An electromechanical model of neuronal dynamics using Hamilton's principle
por: Drapaca, Corina S.
Publicado: (2015) -
Corrigendum: An electromechanical model of neuronal dynamics using Hamilton's principle
por: Drapaca, Corina S.
Publicado: (2015) -
Lane‐Hamilton syndrome
por: Grech, Audrey K., et al.
Publicado: (2023)