Cargando…
Drug-protein interaction prediction via variational autoencoders and attention mechanisms
During the process of drug discovery, exploring drug-protein interactions (DPIs) is a key step. With the rapid development of biological data, computer-aided methods are much faster than biological experiments. Deep learning methods have become popular and are mainly used to extract the characterist...
Autores principales: | Zhang, Yue, Hu, Yuqing, Li, Huihui, Liu, Xiaoyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614151/ https://www.ncbi.nlm.nih.gov/pubmed/36313473 http://dx.doi.org/10.3389/fgene.2022.1032779 |
Ejemplares similares
-
Prediction of Drug-Likeness Using Deep Autoencoder Neural Networks
por: Hu, Qiwan, et al.
Publicado: (2018) -
Prediction of Protein–Protein Interaction Sites Based on Stratified Attentional Mechanisms
por: Tang, Minli, et al.
Publicado: (2021) -
Interpretable Feature Generation in ECG Using a Variational Autoencoder
por: Kuznetsov, V. V., et al.
Publicado: (2021) -
Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice
por: Simidjievski, Nikola, et al.
Publicado: (2019) -
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
por: Feng, Xiang, et al.
Publicado: (2022)