Cargando…

Affordable mobile microfluidic diagnostics: minimum requirements for smartphones and digital imaging for colorimetric and fluorometric anti-dengue and anti-SARS-CoV-2 antibody detection

Background: Miniaturised bioassays permit diagnostic testing near the patient, and the results can be recorded digitally using inexpensive cameras including smartphone and mobile phone cameras. Although digital cameras are now inexpensive and portable, the minimum performance required for microfluid...

Descripción completa

Detalles Bibliográficos
Autores principales: Jégouic, Sophie M., Jones, Ian M., Edwards, Alexander D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614285/
https://www.ncbi.nlm.nih.gov/pubmed/36312459
http://dx.doi.org/10.12688/wellcomeopenres.16628.1
Descripción
Sumario:Background: Miniaturised bioassays permit diagnostic testing near the patient, and the results can be recorded digitally using inexpensive cameras including smartphone and mobile phone cameras. Although digital cameras are now inexpensive and portable, the minimum performance required for microfluidic diagnostic bioassays has not been defined. We present a systematic comparison of a wide range of different digital cameras for capturing and measuring results of microfluidic bioassays and describe a framework to specify performance requirements to quantify immunoassays. Methods: A set of 200 µm diameter microchannels was filled with a range of concentrations of dyes used in colorimetric and fluorometric enzyme immunoassays. These were imaged in parallel using cameras of varying cost and performance ranging from <£30 to >£500. Results: Higher resolution imaging allowed larger numbers of microdevices to be resolved and analysed in a single image. In contrast, low quality cameras were still able to quantify results but for fewer samples. In some cases, an additional macro lens was added to focus closely. If image resolution was sufficient to identify individual microfluidic channels as separate lines, all cameras were able to quantify a similar range of concentrations of both colorimetric and fluorometric dyes. However, the mid-range cameras performed better, with the lowest cost cameras only allowing one or two samples to be quantified per image. Consistent with these findings, we demonstrate that quantitation (to determine endpoint titre) of antibodies against dengue and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses is possible using a wide range of digital imaging devices including the mid-range smartphone iPhone 6S and a budget Android smartphone costing <£50. Conclusions: In conclusion, while more expensive and higher quality cameras allow larger numbers of devices to be simultaneously imaged, even the lowest resolution and cheapest cameras were sufficient to record and quantify immunoassay results.