Cargando…
Development and Validation of a Model Using Radiomics Features from an Apparent Diffusion Coefficient Map to Diagnose Local Tumor Recurrence in Patients Treated for Head and Neck Squamous Cell Carcinoma
OBJECTIVE: To develop and validate a model using radiomics features from apparent diffusion coefficient (ADC) map to diagnose local tumor recurrence in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: This retrospective study included 285 patients (mean age ± standard deviation,...
Autores principales: | Kim, Minjae, Lee, Jeong Hyun, Joo, Leehi, Jeong, Boryeong, Kim, Seonok, Ham, Sungwon, Yun, Jihye, Kim, NamKug, Chung, Sae Rom, Choi, Young Jun, Baek, Jung Hwan, Lee, Ji Ye, Kim, Ji-hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614290/ https://www.ncbi.nlm.nih.gov/pubmed/36126954 http://dx.doi.org/10.3348/kjr.2022.0299 |
Ejemplares similares
-
MRI Predictors of Malignant Transformation in Patients with Inverted Papilloma: A Decision Tree Analysis Using Conventional Imaging Features and Histogram Analysis of Apparent Diffusion Coefficients
por: Suh, Chong Hyun, et al.
Publicado: (2021) -
Neuroimaging Findings in Patients with COVID-19: A Systematic Review and Meta-Analysis
por: Kim, Pyeong Hwa, et al.
Publicado: (2021) -
True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis
por: Song, Yong Sub, et al.
Publicado: (2013) -
Is Diffusion-Weighted MRI Useful for Differentiation of Small Non-Necrotic Cervical Lymph Nodes in Patients with Head and Neck Malignancies?
por: Lim, Hyun Kyung, et al.
Publicado: (2014) -
Diffusion-weighted Magnetic Resonance Imaging for Predicting Response to Chemoradiation Therapy for Head and Neck Squamous Cell Carcinoma: A Systematic Review
por: Chung, Sae Rom, et al.
Publicado: (2019)