Cargando…
Human variation in population-wide gene expression data predicts gene perturbation phenotype
Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function “in population” experiment. We describe here an approach, huva (hum...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614568/ https://www.ncbi.nlm.nih.gov/pubmed/36310583 http://dx.doi.org/10.1016/j.isci.2022.105328 |
_version_ | 1784820223525781504 |
---|---|
author | Bonaguro, Lorenzo Schulte-Schrepping, Jonas Carraro, Caterina Sun, Laura L. Reiz, Benedikt Gemünd, Ioanna Saglam, Adem Rahmouni, Souad Georges, Michel Arts, Peer Hoischen, Alexander Joosten, Leo A.B. van de Veerdonk, Frank L. Netea, Mihai G. Händler, Kristian Mukherjee, Sach Ulas, Thomas Schultze, Joachim L. Aschenbrenner, Anna C. |
author_facet | Bonaguro, Lorenzo Schulte-Schrepping, Jonas Carraro, Caterina Sun, Laura L. Reiz, Benedikt Gemünd, Ioanna Saglam, Adem Rahmouni, Souad Georges, Michel Arts, Peer Hoischen, Alexander Joosten, Leo A.B. van de Veerdonk, Frank L. Netea, Mihai G. Händler, Kristian Mukherjee, Sach Ulas, Thomas Schultze, Joachim L. Aschenbrenner, Anna C. |
author_sort | Bonaguro, Lorenzo |
collection | PubMed |
description | Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function “in population” experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort. |
format | Online Article Text |
id | pubmed-9614568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96145682022-10-29 Human variation in population-wide gene expression data predicts gene perturbation phenotype Bonaguro, Lorenzo Schulte-Schrepping, Jonas Carraro, Caterina Sun, Laura L. Reiz, Benedikt Gemünd, Ioanna Saglam, Adem Rahmouni, Souad Georges, Michel Arts, Peer Hoischen, Alexander Joosten, Leo A.B. van de Veerdonk, Frank L. Netea, Mihai G. Händler, Kristian Mukherjee, Sach Ulas, Thomas Schultze, Joachim L. Aschenbrenner, Anna C. iScience Article Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function “in population” experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort. Elsevier 2022-10-12 /pmc/articles/PMC9614568/ /pubmed/36310583 http://dx.doi.org/10.1016/j.isci.2022.105328 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Bonaguro, Lorenzo Schulte-Schrepping, Jonas Carraro, Caterina Sun, Laura L. Reiz, Benedikt Gemünd, Ioanna Saglam, Adem Rahmouni, Souad Georges, Michel Arts, Peer Hoischen, Alexander Joosten, Leo A.B. van de Veerdonk, Frank L. Netea, Mihai G. Händler, Kristian Mukherjee, Sach Ulas, Thomas Schultze, Joachim L. Aschenbrenner, Anna C. Human variation in population-wide gene expression data predicts gene perturbation phenotype |
title | Human variation in population-wide gene expression data predicts gene perturbation phenotype |
title_full | Human variation in population-wide gene expression data predicts gene perturbation phenotype |
title_fullStr | Human variation in population-wide gene expression data predicts gene perturbation phenotype |
title_full_unstemmed | Human variation in population-wide gene expression data predicts gene perturbation phenotype |
title_short | Human variation in population-wide gene expression data predicts gene perturbation phenotype |
title_sort | human variation in population-wide gene expression data predicts gene perturbation phenotype |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614568/ https://www.ncbi.nlm.nih.gov/pubmed/36310583 http://dx.doi.org/10.1016/j.isci.2022.105328 |
work_keys_str_mv | AT bonagurolorenzo humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT schulteschreppingjonas humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT carrarocaterina humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT sunlaural humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT reizbenedikt humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT gemundioanna humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT saglamadem humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT rahmounisouad humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT georgesmichel humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT artspeer humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT hoischenalexander humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT joostenleoab humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT vandeveerdonkfrankl humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT neteamihaig humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT handlerkristian humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT mukherjeesach humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT ulasthomas humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT schultzejoachiml humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype AT aschenbrennerannac humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype |