Cargando…

Human variation in population-wide gene expression data predicts gene perturbation phenotype

Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function “in population” experiment. We describe here an approach, huva (hum...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonaguro, Lorenzo, Schulte-Schrepping, Jonas, Carraro, Caterina, Sun, Laura L., Reiz, Benedikt, Gemünd, Ioanna, Saglam, Adem, Rahmouni, Souad, Georges, Michel, Arts, Peer, Hoischen, Alexander, Joosten, Leo A.B., van de Veerdonk, Frank L., Netea, Mihai G., Händler, Kristian, Mukherjee, Sach, Ulas, Thomas, Schultze, Joachim L., Aschenbrenner, Anna C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614568/
https://www.ncbi.nlm.nih.gov/pubmed/36310583
http://dx.doi.org/10.1016/j.isci.2022.105328
_version_ 1784820223525781504
author Bonaguro, Lorenzo
Schulte-Schrepping, Jonas
Carraro, Caterina
Sun, Laura L.
Reiz, Benedikt
Gemünd, Ioanna
Saglam, Adem
Rahmouni, Souad
Georges, Michel
Arts, Peer
Hoischen, Alexander
Joosten, Leo A.B.
van de Veerdonk, Frank L.
Netea, Mihai G.
Händler, Kristian
Mukherjee, Sach
Ulas, Thomas
Schultze, Joachim L.
Aschenbrenner, Anna C.
author_facet Bonaguro, Lorenzo
Schulte-Schrepping, Jonas
Carraro, Caterina
Sun, Laura L.
Reiz, Benedikt
Gemünd, Ioanna
Saglam, Adem
Rahmouni, Souad
Georges, Michel
Arts, Peer
Hoischen, Alexander
Joosten, Leo A.B.
van de Veerdonk, Frank L.
Netea, Mihai G.
Händler, Kristian
Mukherjee, Sach
Ulas, Thomas
Schultze, Joachim L.
Aschenbrenner, Anna C.
author_sort Bonaguro, Lorenzo
collection PubMed
description Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function “in population” experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort.
format Online
Article
Text
id pubmed-9614568
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96145682022-10-29 Human variation in population-wide gene expression data predicts gene perturbation phenotype Bonaguro, Lorenzo Schulte-Schrepping, Jonas Carraro, Caterina Sun, Laura L. Reiz, Benedikt Gemünd, Ioanna Saglam, Adem Rahmouni, Souad Georges, Michel Arts, Peer Hoischen, Alexander Joosten, Leo A.B. van de Veerdonk, Frank L. Netea, Mihai G. Händler, Kristian Mukherjee, Sach Ulas, Thomas Schultze, Joachim L. Aschenbrenner, Anna C. iScience Article Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function “in population” experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort. Elsevier 2022-10-12 /pmc/articles/PMC9614568/ /pubmed/36310583 http://dx.doi.org/10.1016/j.isci.2022.105328 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Bonaguro, Lorenzo
Schulte-Schrepping, Jonas
Carraro, Caterina
Sun, Laura L.
Reiz, Benedikt
Gemünd, Ioanna
Saglam, Adem
Rahmouni, Souad
Georges, Michel
Arts, Peer
Hoischen, Alexander
Joosten, Leo A.B.
van de Veerdonk, Frank L.
Netea, Mihai G.
Händler, Kristian
Mukherjee, Sach
Ulas, Thomas
Schultze, Joachim L.
Aschenbrenner, Anna C.
Human variation in population-wide gene expression data predicts gene perturbation phenotype
title Human variation in population-wide gene expression data predicts gene perturbation phenotype
title_full Human variation in population-wide gene expression data predicts gene perturbation phenotype
title_fullStr Human variation in population-wide gene expression data predicts gene perturbation phenotype
title_full_unstemmed Human variation in population-wide gene expression data predicts gene perturbation phenotype
title_short Human variation in population-wide gene expression data predicts gene perturbation phenotype
title_sort human variation in population-wide gene expression data predicts gene perturbation phenotype
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614568/
https://www.ncbi.nlm.nih.gov/pubmed/36310583
http://dx.doi.org/10.1016/j.isci.2022.105328
work_keys_str_mv AT bonagurolorenzo humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT schulteschreppingjonas humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT carrarocaterina humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT sunlaural humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT reizbenedikt humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT gemundioanna humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT saglamadem humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT rahmounisouad humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT georgesmichel humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT artspeer humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT hoischenalexander humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT joostenleoab humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT vandeveerdonkfrankl humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT neteamihaig humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT handlerkristian humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT mukherjeesach humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT ulasthomas humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT schultzejoachiml humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype
AT aschenbrennerannac humanvariationinpopulationwidegeneexpressiondatapredictsgeneperturbationphenotype