Cargando…

A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial

BACKGROUND: Large skull defects present a reconstructive challenge. Conventional cranioplasty options include autologous bone grafts, vascularized bone, metals, synthetic ceramics, and polymers. Autologous options are affected by resorption and residual contour deformities. Synthetic materials may b...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez Matheus, Isabel, Hutmacher, Dietmar W, Olson, Sarah, Redmond, Michael, Sutherland, Allison, Wagels, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614622/
https://www.ncbi.nlm.nih.gov/pubmed/36227628
http://dx.doi.org/10.2196/36111
_version_ 1784820236449480704
author Gonzalez Matheus, Isabel
Hutmacher, Dietmar W
Olson, Sarah
Redmond, Michael
Sutherland, Allison
Wagels, Michael
author_facet Gonzalez Matheus, Isabel
Hutmacher, Dietmar W
Olson, Sarah
Redmond, Michael
Sutherland, Allison
Wagels, Michael
author_sort Gonzalez Matheus, Isabel
collection PubMed
description BACKGROUND: Large skull defects present a reconstructive challenge. Conventional cranioplasty options include autologous bone grafts, vascularized bone, metals, synthetic ceramics, and polymers. Autologous options are affected by resorption and residual contour deformities. Synthetic materials may be customized via digital planning and 3D printing, but they all carry a risk of implant exposure, failure, and infection, which increases when the defect is large. These complications can be a threat to life. Without reconstruction, patients with cranial defects may experience headaches and stigmatization. The protection of the brain necessitates lifelong helmet use, which is also stigmatizing. OBJECTIVE: Our clinical trial will formally study a hybridized technique's capacity to reconstruct large calvarial defects. METHODS: A hybridized technique that draws on the benefits of autologous and synthetic materials has been developed by the research team. This involves wrapping a biodegradable, ultrastructured, 3D-printed scaffold made of medical-grade polycaprolactone and tricalcium phosphate in a vascularized, autotransplanted periosteum to exploit the capacity of vascularized periostea to regenerate bone. In vitro, the scaffold system supports cell attachment, migration, and proliferation with slow but sustained degradation to permit host tissue regeneration and the replacement of the scaffold. The in vivo compatibility of this scaffold system is robust—the base material has been used clinically as a resorbable suture material for decades. The importance of scaffold vascularization, which is inextricably linked to bone regeneration, is underappreciated. A variety of methods have been described to address this, including scaffold prelamination and axial vascularization via arteriovenous loops and autotransplanted flaps. However, none of these directly promote bone regeneration. RESULTS: We expect to have results before the end of 2023. As of December 2020, we have enrolled 3 participants for the study. CONCLUSIONS: The regenerative matching axial vascularization technique may be an alternative method of reconstruction for large calvarial defects. It involves performing a vascularized free tissue transfer and using a bioresorbable, 3D-printed scaffold to promote and support bone regeneration (termed the regenerative matching axial vascularization technique). This technique may be used to reconstruct skull bone defects that were previously thought to be unreconstructable, reduce the risk of implant-related complications, and achieve consistent outcomes in cranioplasty. This must now be tested in prospective clinical trials. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12620001171909; https://tinyurl.com/4rakccb3 INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/36111
format Online
Article
Text
id pubmed-9614622
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-96146222022-10-29 A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial Gonzalez Matheus, Isabel Hutmacher, Dietmar W Olson, Sarah Redmond, Michael Sutherland, Allison Wagels, Michael JMIR Res Protoc Protocol BACKGROUND: Large skull defects present a reconstructive challenge. Conventional cranioplasty options include autologous bone grafts, vascularized bone, metals, synthetic ceramics, and polymers. Autologous options are affected by resorption and residual contour deformities. Synthetic materials may be customized via digital planning and 3D printing, but they all carry a risk of implant exposure, failure, and infection, which increases when the defect is large. These complications can be a threat to life. Without reconstruction, patients with cranial defects may experience headaches and stigmatization. The protection of the brain necessitates lifelong helmet use, which is also stigmatizing. OBJECTIVE: Our clinical trial will formally study a hybridized technique's capacity to reconstruct large calvarial defects. METHODS: A hybridized technique that draws on the benefits of autologous and synthetic materials has been developed by the research team. This involves wrapping a biodegradable, ultrastructured, 3D-printed scaffold made of medical-grade polycaprolactone and tricalcium phosphate in a vascularized, autotransplanted periosteum to exploit the capacity of vascularized periostea to regenerate bone. In vitro, the scaffold system supports cell attachment, migration, and proliferation with slow but sustained degradation to permit host tissue regeneration and the replacement of the scaffold. The in vivo compatibility of this scaffold system is robust—the base material has been used clinically as a resorbable suture material for decades. The importance of scaffold vascularization, which is inextricably linked to bone regeneration, is underappreciated. A variety of methods have been described to address this, including scaffold prelamination and axial vascularization via arteriovenous loops and autotransplanted flaps. However, none of these directly promote bone regeneration. RESULTS: We expect to have results before the end of 2023. As of December 2020, we have enrolled 3 participants for the study. CONCLUSIONS: The regenerative matching axial vascularization technique may be an alternative method of reconstruction for large calvarial defects. It involves performing a vascularized free tissue transfer and using a bioresorbable, 3D-printed scaffold to promote and support bone regeneration (termed the regenerative matching axial vascularization technique). This technique may be used to reconstruct skull bone defects that were previously thought to be unreconstructable, reduce the risk of implant-related complications, and achieve consistent outcomes in cranioplasty. This must now be tested in prospective clinical trials. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12620001171909; https://tinyurl.com/4rakccb3 INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/36111 JMIR Publications 2022-10-13 /pmc/articles/PMC9614622/ /pubmed/36227628 http://dx.doi.org/10.2196/36111 Text en ©Isabel Gonzalez Matheus, Dietmar W Hutmacher, Sarah Olson, Michael Redmond, Allison Sutherland, Michael Wagels. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 13.10.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on https://www.researchprotocols.org, as well as this copyright and license information must be included.
spellingShingle Protocol
Gonzalez Matheus, Isabel
Hutmacher, Dietmar W
Olson, Sarah
Redmond, Michael
Sutherland, Allison
Wagels, Michael
A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial
title A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial
title_full A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial
title_fullStr A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial
title_full_unstemmed A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial
title_short A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial
title_sort medical-grade polycaprolactone and tricalcium phosphate scaffold system with corticoperiosteal tissue transfer for the reconstruction of acquired calvarial defects in adults: protocol for a single-arm feasibility trial
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614622/
https://www.ncbi.nlm.nih.gov/pubmed/36227628
http://dx.doi.org/10.2196/36111
work_keys_str_mv AT gonzalezmatheusisabel amedicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT hutmacherdietmarw amedicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT olsonsarah amedicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT redmondmichael amedicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT sutherlandallison amedicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT wagelsmichael amedicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT gonzalezmatheusisabel medicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT hutmacherdietmarw medicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT olsonsarah medicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT redmondmichael medicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT sutherlandallison medicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial
AT wagelsmichael medicalgradepolycaprolactoneandtricalciumphosphatescaffoldsystemwithcorticoperiostealtissuetransferforthereconstructionofacquiredcalvarialdefectsinadultsprotocolforasinglearmfeasibilitytrial