Cargando…
Using machine learning to predict antibiotic resistance to support optimal empiric treatment of urinary tract infections
Background: Antibiotic resistance is pervasive in the Veterans’ Affairs (VA) healthcare system, with rates of fluoroquinolone and trimethoprim–sulfamethoxazole (TMP/SMX) resistance approaching 30% in E. coli urinary isolates. The efficacy of antimicrobial treatment is critically dependent on the sus...
Autores principales: | Brintz, Ben, Nevers, McKenna, Goetz, Matthew, Echevarria, Kelly, Madaras-Kelly, Karl, Samore, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614875/ http://dx.doi.org/10.1017/ash.2022.190 |
Ejemplares similares
-
Validation of antibiotic stewardship metrics for genitourinary infection management in Veterans Affairs outpatient settings
por: Braunfeld, Jordan, et al.
Publicado: (2023) -
Tier-based antimicrobial stewardship metrics for genitourinary-related antibiotic use in Veterans’ Affairs outpatient settings
por: Samore, Matthew, et al.
Publicado: (2022) -
Systematic review of antibiotic stewardship interventions for urinary tract infection management in the ambulatory setting
por: Munsiff, Sonal, et al.
Publicado: (2022) -
Analysis of Recurrent Urinary Tract Infection Management in Outpatient Settings Reveals Opportunities for Antibiotic Stewards
por: Valentine-King, Marissa, et al.
Publicado: (2021) -
Empiric antibiotic selection for community-acquired pneumonia in US hospitals, 2013–2020
por: Wolford, Hannah, et al.
Publicado: (2023)