Cargando…
Key considerations for child and adolescent MRI data collection
Cognitive neuroimaging researchers' ability to infer accurate statistical conclusions from neuroimaging depends greatly on the quality of the data analyzed. This need for quality control is never more evident than when conducting neuroimaging studies with children and adolescents. Developmental...
Autores principales: | Davis, Brittany R., Garza, AnnaCarolina, Church, Jessica A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615104/ https://www.ncbi.nlm.nih.gov/pubmed/36312216 http://dx.doi.org/10.3389/fnimg.2022.981947 |
Ejemplares similares
-
Reproducing FSL's fMRI data analysis via Nipype: Relevance, challenges, and solutions
por: Chen, Yibei, et al.
Publicado: (2022) -
Pre-processing of Sub-millimeter GE-BOLD fMRI Data for Laminar Applications
por: Pais-Roldán, Patricia, et al.
Publicado: (2022) -
autohrf-an R package for generating data-informed event models for general linear modeling of task-based fMRI data
por: Purg, Nina, et al.
Publicado: (2022) -
Corrigendum: autohrf-an R package for generating data-informed event models for general linear modeling of task-based fMRI data
por: Purg, Nina, et al.
Publicado: (2023) -
An Anisotropic 4D Filtering Approach to Recover Brain Activation From Paradigm-Free Functional MRI Data
por: Costantini, Isa, et al.
Publicado: (2022)