Cargando…
Use of regional citrate anticoagulation with medium cut-off membrane: pilot report
BACKGROUND: Regional citrate anticoagulation during hemodialysis provides an immediate and complete anticoagulant effect, which is limited to the extracorporeal circuit. Citrate has become the standard anticoagulant in acute renal replacement therapy and is widely used in various intermittent hemodi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615209/ https://www.ncbi.nlm.nih.gov/pubmed/36303108 http://dx.doi.org/10.1186/s12882-022-02960-y |
Sumario: | BACKGROUND: Regional citrate anticoagulation during hemodialysis provides an immediate and complete anticoagulant effect, which is limited to the extracorporeal circuit. Citrate has become the standard anticoagulant in acute renal replacement therapy and is widely used in various intermittent hemodialysis modalities, especially for patients with contraindications for heparin. With the increased adoption of medium cut-off membranes, experience with regional citrate anticoagulation is needed. To our knowledge, this is the first report to assess the feasibility of regional citrate anticoagulation in expanded hemodialysis. METHODS: We prospectively analyzed 5 expanded hemodialysis procedures in 5 patients in which a medium cut-off membrane (Theranova®) was used. We followed our standard citrate protocol developed and tested for high-flux membrane. Anticoagulation was performed with a continuous infusion of 8% trisodium citrate into the arterial line and supplementation of 1 M calcium chloride into the venous line. We monitored ionized calcium and magnesium, sodium and blood gas analysis. Anticoagulation effectiveness was assessed by post-filter ionized calcium and by visual inspection of the anticoagulation in the circuit. RESULTS: There were no prematurely terminated procedures due to anticoagulation-related complications. With a blood flow of 250 mL/min and a dialysate flow of 500 mL/min, we were able to maintain serum ionized calcium in the range of 0.89–1.29 mmol/L and serum sodium in the range of 136–144 mmol/L. The mean pre- and post-dialysis arterial circuit pH was 7.42 (± 0.04) and 7.53 (± 0.23), respectively. The mean pre- and post-dialysis serum ionized magnesium was 0.54 (± 0.04) mmol/L and 0.43 (± 0.03) mmol/L, respectively (measurements were done on a point-of-care ionometer with a lower normal range for ionized magnesium). CONCLUSION: We have shown that our standard citrate protocol for high-flux hemodialysis membrane could be successfully adopted for use in expanded hemodialysis with a medium cut-off membrane. Overall, electrolyte and acid-base balances were relatively well-controlled and anticoagulation effectiveness was excellent. TRIAL REGISTRATION: This is a pilot report with results taken from a larger ongoing trial (registered at ClinicalTrials.gov on October 25, 2019 under number NCT04139525) comparing citrate and heparin anticoagulation during expanded hemodialysis. |
---|