Cargando…

Early remission in multiple sclerosis is linked to altered coherence of the Cerebellar Network

BACKGROUND: The development of permanent disability in multiple sclerosis (MS) is highly variable among patients, and the exact mechanisms that contribute to this disability remain unknown. METHODS: Following the idea that the brain has intrinsic network organization, we investigated changes of func...

Descripción completa

Detalles Bibliográficos
Autores principales: Tahedl, Marlene, Levine, Seth M., Weissert, Robert, Kohl, Zacharias, Lee, De-Hyung, Linker, Ralf A., Schwarzbach, Jens V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615296/
https://www.ncbi.nlm.nih.gov/pubmed/36303221
http://dx.doi.org/10.1186/s12967-022-03576-4
Descripción
Sumario:BACKGROUND: The development of permanent disability in multiple sclerosis (MS) is highly variable among patients, and the exact mechanisms that contribute to this disability remain unknown. METHODS: Following the idea that the brain has intrinsic network organization, we investigated changes of functional networks in MS patients to identify possible links between network reorganization and remission from clinical episodes in MS. Eighteen relapsing–remitting MS patients (RRMS) in their first clinical manifestation underwent resting-state functional MRI and again during remission. We used ten template networks, identified from independent component analysis, to compare changes in network coherence for each patient compared to those of 44 healthy controls from the Human Connectome Project test–retest dataset (two-sample t-test of pre-post differences). Combining a binomial test with Monte Carlo procedures, we tested four models of how functional coherence might change between the first clinical episode and remission: a network can change its coherence (a) with itself (“one-with-self”), (b) with another network (“one-with-other”), or (c) with a set of other networks (“one-with-many”), or (d) multiple networks can change their coherence with respect to one common network (“many-with-one”). RESULTS: We found evidence supporting two of these hypotheses: coherence decreased between the Executive Control Network and several other networks (“one-with-many” hypothesis), and a set of networks altered their coherence with the Cerebellar Network (“many-with-one” hypothesis). CONCLUSION: Given the unexpected commonality of the Cerebellar Network’s altered coherence with other networks (a finding present in more than 70% of the patients, despite their clinical heterogeneity), we conclude that remission in MS may result from learning processes mediated by the Cerebellar Network. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03576-4.