Cargando…

The roles of motion, gesture, and embodied action in the processing of mathematical concepts

This article discusses perspective and frame of reference in the metaphorical description of mathematical concepts in terms of motions, gestures, and embodied actions. When a mathematical concept is described metaphorically in terms of gestures, embodied actions, or fictive motions, the motor system...

Descripción completa

Detalles Bibliográficos
Autores principales: Khatin-Zadeh, Omid, Farsani, Danyal, Eskandari, Zahra, Marmolejo-Ramos, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616004/
https://www.ncbi.nlm.nih.gov/pubmed/36312053
http://dx.doi.org/10.3389/fpsyg.2022.969341
Descripción
Sumario:This article discusses perspective and frame of reference in the metaphorical description of mathematical concepts in terms of motions, gestures, and embodied actions. When a mathematical concept is described metaphorically in terms of gestures, embodied actions, or fictive motions, the motor system comes into play to ground and understand that concept. Every motion, gesture, or embodied action involves a perspective and a frame of reference. The flexibility in taking perspective and frame of reference allows people to embody a mathematical concept or idea in various ways. Based on the findings of past studies, it is suggested that the graphical representation of a mathematical concept may activate those areas of the motor system that are involved in the production of that graphical representation. This is supported by studies showing that when observers look at a painting or handwritten letters, they simulate the painter’s or writer’s hand movements during painting or writing. Likewise, the motor system can contribute to the grounding of abstract mathematical concepts, such as functions, numbers, and arithmetic operations.