Cargando…
Endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy
Patients suffering from immune‐mediated necrotizing myopathies (IMNM) harbor, the pathognomonic myositis‐specific auto‐antibodies anti‐SRP54 or ‐HMGCR, while about one third of them do not. Activation of chaperone‐assisted autophagy was described as being part of the molecular etiology of IMNM. Endo...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616093/ https://www.ncbi.nlm.nih.gov/pubmed/35703068 http://dx.doi.org/10.1111/bpa.13084 |
_version_ | 1784820575133237248 |
---|---|
author | Preusse, Corinna Marteau, Theodore Fischer, Norina Hentschel, Andreas Sickmann, Albert Lang, Sven Schneider, Udo Schara‐Schmidt, Ulrike Meyer, Nancy Ruck, Tobias Dengler, Nora F. Prudlo, Johannes Dudesek, Ales Görl, Norman Allenbach, Yves Benveniste, Olivier Goebel, Hans‐Hilmar Dittmayer, Carsten Stenzel, Werner Roos, Andreas |
author_facet | Preusse, Corinna Marteau, Theodore Fischer, Norina Hentschel, Andreas Sickmann, Albert Lang, Sven Schneider, Udo Schara‐Schmidt, Ulrike Meyer, Nancy Ruck, Tobias Dengler, Nora F. Prudlo, Johannes Dudesek, Ales Görl, Norman Allenbach, Yves Benveniste, Olivier Goebel, Hans‐Hilmar Dittmayer, Carsten Stenzel, Werner Roos, Andreas |
author_sort | Preusse, Corinna |
collection | PubMed |
description | Patients suffering from immune‐mediated necrotizing myopathies (IMNM) harbor, the pathognomonic myositis‐specific auto‐antibodies anti‐SRP54 or ‐HMGCR, while about one third of them do not. Activation of chaperone‐assisted autophagy was described as being part of the molecular etiology of IMNM. Endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR)‐stress accompanied by activation of the unfolded protein response (UPR) often precedes activation of the protein clearance machinery and represents a cellular defense mechanism toward restoration of proteostasis. Here, we show that ER/SR‐stress may be part of the molecular etiology of IMNM. To address this assumption, ER/SR‐stress related key players covering the three known branches (PERK‐mediated, IRE1‐mediated, and ATF6‐mediated) were investigated on both, the transcript and the protein levels utilizing 39 muscle biopsy specimens derived from IMNM‐patients. Our results demonstrate an activation of all three UPR‐branches in IMNM, which most likely precedes the activation of the protein clearance machinery. In detail, we identified increased phosphorylation of PERK and eIF2a along with increased expression and protein abundance of ATF4, all well‐documented characteristics for the activation of the UPR. Further, we identified increased general XBP1‐level, and elevated XBP1 protein levels. Additionally, our transcript studies revealed an increased ATF6‐expression, which was confirmed by immunostaining studies indicating a myonuclear translocation of the cleaved ATF6‐form toward the forced transcription of UPR‐related chaperones. In accordance with that, our data demonstrate an increase of downstream factors including ER/SR co‐chaperones and chaperones (e.g., SIL1) indicating an UPR‐activation on a broader level with no significant differences between seropositive and seronegative patients. Taken together, one might assume that UPR‐activation within muscle fibers might not only serve to restore protein homeostasis, but also enhance sarcolemmal presentation of proteins crucial for attracting immune cells. Since modulation of ER‐stress and UPR via application of chemical chaperones became a promising therapeutic treatment approach, our findings might represent the starting point for new interventional concepts. |
format | Online Article Text |
id | pubmed-9616093 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96160932022-10-31 Endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy Preusse, Corinna Marteau, Theodore Fischer, Norina Hentschel, Andreas Sickmann, Albert Lang, Sven Schneider, Udo Schara‐Schmidt, Ulrike Meyer, Nancy Ruck, Tobias Dengler, Nora F. Prudlo, Johannes Dudesek, Ales Görl, Norman Allenbach, Yves Benveniste, Olivier Goebel, Hans‐Hilmar Dittmayer, Carsten Stenzel, Werner Roos, Andreas Brain Pathol Research Articles Patients suffering from immune‐mediated necrotizing myopathies (IMNM) harbor, the pathognomonic myositis‐specific auto‐antibodies anti‐SRP54 or ‐HMGCR, while about one third of them do not. Activation of chaperone‐assisted autophagy was described as being part of the molecular etiology of IMNM. Endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR)‐stress accompanied by activation of the unfolded protein response (UPR) often precedes activation of the protein clearance machinery and represents a cellular defense mechanism toward restoration of proteostasis. Here, we show that ER/SR‐stress may be part of the molecular etiology of IMNM. To address this assumption, ER/SR‐stress related key players covering the three known branches (PERK‐mediated, IRE1‐mediated, and ATF6‐mediated) were investigated on both, the transcript and the protein levels utilizing 39 muscle biopsy specimens derived from IMNM‐patients. Our results demonstrate an activation of all three UPR‐branches in IMNM, which most likely precedes the activation of the protein clearance machinery. In detail, we identified increased phosphorylation of PERK and eIF2a along with increased expression and protein abundance of ATF4, all well‐documented characteristics for the activation of the UPR. Further, we identified increased general XBP1‐level, and elevated XBP1 protein levels. Additionally, our transcript studies revealed an increased ATF6‐expression, which was confirmed by immunostaining studies indicating a myonuclear translocation of the cleaved ATF6‐form toward the forced transcription of UPR‐related chaperones. In accordance with that, our data demonstrate an increase of downstream factors including ER/SR co‐chaperones and chaperones (e.g., SIL1) indicating an UPR‐activation on a broader level with no significant differences between seropositive and seronegative patients. Taken together, one might assume that UPR‐activation within muscle fibers might not only serve to restore protein homeostasis, but also enhance sarcolemmal presentation of proteins crucial for attracting immune cells. Since modulation of ER‐stress and UPR via application of chemical chaperones became a promising therapeutic treatment approach, our findings might represent the starting point for new interventional concepts. John Wiley and Sons Inc. 2022-06-15 /pmc/articles/PMC9616093/ /pubmed/35703068 http://dx.doi.org/10.1111/bpa.13084 Text en © 2022 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Preusse, Corinna Marteau, Theodore Fischer, Norina Hentschel, Andreas Sickmann, Albert Lang, Sven Schneider, Udo Schara‐Schmidt, Ulrike Meyer, Nancy Ruck, Tobias Dengler, Nora F. Prudlo, Johannes Dudesek, Ales Görl, Norman Allenbach, Yves Benveniste, Olivier Goebel, Hans‐Hilmar Dittmayer, Carsten Stenzel, Werner Roos, Andreas Endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy |
title | Endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy |
title_full | Endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy |
title_fullStr | Endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy |
title_full_unstemmed | Endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy |
title_short | Endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy |
title_sort | endoplasmic reticulum‐stress and unfolded protein response‐activation in immune‐mediated necrotizing myopathy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616093/ https://www.ncbi.nlm.nih.gov/pubmed/35703068 http://dx.doi.org/10.1111/bpa.13084 |
work_keys_str_mv | AT preussecorinna endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT marteautheodore endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT fischernorina endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT hentschelandreas endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT sickmannalbert endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT langsven endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT schneiderudo endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT scharaschmidtulrike endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT meyernancy endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT rucktobias endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT denglernoraf endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT prudlojohannes endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT dudesekales endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT gorlnorman endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT allenbachyves endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT benvenisteolivier endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT goebelhanshilmar endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT dittmayercarsten endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT stenzelwerner endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy AT roosandreas endoplasmicreticulumstressandunfoldedproteinresponseactivationinimmunemediatednecrotizingmyopathy |