Cargando…
Thalamic Connectivity System Across Psychiatric Disorders: Current Status and Clinical Implications
The thalamic connectivity system, with the thalamus as the central node, enables transmission of the brain’s neural computations via extensive connections to cortical, subcortical, and cerebellar regions. Emerging reports suggest deficits in this system across multiple psychiatric disorders, making...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616255/ https://www.ncbi.nlm.nih.gov/pubmed/36324665 http://dx.doi.org/10.1016/j.bpsgos.2021.09.008 |
Sumario: | The thalamic connectivity system, with the thalamus as the central node, enables transmission of the brain’s neural computations via extensive connections to cortical, subcortical, and cerebellar regions. Emerging reports suggest deficits in this system across multiple psychiatric disorders, making it a unique network of high translational and transdiagnostic utility in mapping neural alterations that potentially contribute to symptoms and disturbances in psychiatric patients. However, despite considerable research effort, it is still debated how this system contributes to psychiatric disorders. This review characterizes current knowledge regarding thalamic connectivity system deficits in psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder, across multiple levels of the system. We identify the presence of common and distinct patterns of deficits in the thalamic connectivity system in major psychiatric disorders and assess their nature and characteristics. Specifically, this review assembles evidence for the hypotheses of 1) thalamic microstructure, particularly in the mediodorsal nucleus, as a state marker of psychosis; 2) thalamo-prefrontal connectivity as a trait marker of psychosis; and 3) thalamo-somatosensory/parietal connectivity as a possible marker of general psychiatric illness. Furthermore, possible mechanisms contributing to thalamocortical dysconnectivity are explored. We discuss current views on the contributions of cerebellar-thalamic connectivity to the thalamic connectivity system and propose future studies to examine its effects at multiple levels, from the molecular (e.g., glutamatergic) to the behavioral (e.g., cognition), to gain a deeper understanding of the mechanisms that underlie the disturbances observed in psychiatric disorders. |
---|