Cargando…
Conceptualising a channel-based overlapping CNN tower architecture for COVID-19 identification from CT-scan images
Convolutional Neural Network (CNN) has been employed in classifying the COVID cases from the lungs’ CT-Scan with promising quantifying metrics. However, SARS COVID-19 has been mutated, and we have many versions of the virus B.1.1.7, B.1.135, and P.1, hence there is a need for a more robust architect...
Autores principales: | Tiwari, Ravi Shekhar, D, Lakshmi, Das, Tapan Kumar, Srinivasan, Kathiravan, Chang, Chuan-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616419/ https://www.ncbi.nlm.nih.gov/pubmed/36307444 http://dx.doi.org/10.1038/s41598-022-21700-8 |
Ejemplares similares
-
COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
por: Alshazly, Hammam, et al.
Publicado: (2021) -
A light CNN for detecting COVID-19 from CT scans of the chest
por: Polsinelli, Matteo, et al.
Publicado: (2020) -
Cycloidal CT with CNN-based sinogram completion and in-scan generation of training data
por: Pelt, Daniël M., et al.
Publicado: (2022) -
On tower and checkerboard neural network architectures for gene expression inference
por: Kunc, Vladimír, et al.
Publicado: (2020) -
Side-Scan Sonar Image Segmentation Based on Multi-Channel CNN for AUV Navigation
por: Yang, Dianyu, et al.
Publicado: (2022)