Cargando…

Severity of COVID-19 patients with coexistence of asthma and vitamin D deficiency

Coronavirus disease 2019 (COVID-19)-driven global pandemic triggered innumerable health complications, imposing great challenges in managing other respiratory diseases like asthma. Furthermore, increases in the underlying inflammation involved in the fatality of COVID-19 have been linked with lack o...

Descripción completa

Detalles Bibliográficos
Autores principales: Islam, M. Babul, Chowdhury, Utpala Nanda, Nashiry, Md. Asif, Moni, Mohammad Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616486/
https://www.ncbi.nlm.nih.gov/pubmed/36338941
http://dx.doi.org/10.1016/j.imu.2022.101116
Descripción
Sumario:Coronavirus disease 2019 (COVID-19)-driven global pandemic triggered innumerable health complications, imposing great challenges in managing other respiratory diseases like asthma. Furthermore, increases in the underlying inflammation involved in the fatality of COVID-19 have been linked with lack of vitamin D. In this research work, we intend to investigate the possible genetic linkage of asthma and vitamin D deficiency with the severity and fatality of COVID-19 using a network-based approach. We identified and analysed 41 and 14 differentially expressed genes (DEGs) of COVID-19 being common with asthma and vitamin D deficiency, respectively, through the comparative differential gene expression analysis and their footprints on signalling pathways. Gene set enrichment analysis for GO terms and signalling pathways reveals key biological activities, including inflammatory response-related pathways (e.g., cytokine- and chemokine-mediated signalling pathways, IL-17, and TNF signalling pathways). Besides, the Protein–Protein Interaction network analysis of those DEGs reveals hub proteins, some of which are reported as inflammatory antiviral interferon-stimulated biomarkers that potentially drive the cytokine storm leading to COVID-19 severity and fatality, and contributes in the early stage of viral replication, respectively. Moreover, the regulatory network analysis found these DEGs associated with antiviral and tumour inhibitory transcription factors and micro-RNAs. Finally, drug–target enrichment analysis yields tetradioxin, estradiol, arsenenous acid, and zinc, which have been reported to be effective in suppressing the pro-inflammatory cytokines production, and other respiratory tract infections. Our results yield shared biomarker-driven key hypotheses followed by network-based analytics, demystifying the mechanistic details of COVID-19 comorbidity of asthma and vitamin D deficiency with their potential therapeutic implications.