Cargando…

Chip-based laser with 1-hertz integrated linewidth

Lasers with hertz linewidths at time scales of seconds are critical for metrology, timekeeping, and manipulation of quantum systems. Such frequency stability relies on bulk-optic lasers and reference cavities, where increased size is leveraged to reduce noise but with the trade-off of cost, hand ass...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Joel, McLemore, Charles A., Xiang, Chao, Lee, Dahyeon, Wu, Lue, Jin, Warren, Kelleher, Megan, Jin, Naijun, Mason, David, Chang, Lin, Feshali, Avi, Paniccia, Mario, Rakich, Peter T., Vahala, Kerry J., Diddams, Scott A., Quinlan, Franklyn, Bowers, John E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616488/
https://www.ncbi.nlm.nih.gov/pubmed/36306350
http://dx.doi.org/10.1126/sciadv.abp9006
_version_ 1784820652230836224
author Guo, Joel
McLemore, Charles A.
Xiang, Chao
Lee, Dahyeon
Wu, Lue
Jin, Warren
Kelleher, Megan
Jin, Naijun
Mason, David
Chang, Lin
Feshali, Avi
Paniccia, Mario
Rakich, Peter T.
Vahala, Kerry J.
Diddams, Scott A.
Quinlan, Franklyn
Bowers, John E.
author_facet Guo, Joel
McLemore, Charles A.
Xiang, Chao
Lee, Dahyeon
Wu, Lue
Jin, Warren
Kelleher, Megan
Jin, Naijun
Mason, David
Chang, Lin
Feshali, Avi
Paniccia, Mario
Rakich, Peter T.
Vahala, Kerry J.
Diddams, Scott A.
Quinlan, Franklyn
Bowers, John E.
author_sort Guo, Joel
collection PubMed
description Lasers with hertz linewidths at time scales of seconds are critical for metrology, timekeeping, and manipulation of quantum systems. Such frequency stability relies on bulk-optic lasers and reference cavities, where increased size is leveraged to reduce noise but with the trade-off of cost, hand assembly, and limited applications. Alternatively, planar waveguide–based lasers enjoy complementary metal-oxide semiconductor scalability yet are fundamentally limited from achieving hertz linewidths by stochastic noise and thermal sensitivity. In this work, we demonstrate a laser system with a 1-s linewidth of 1.1 Hz and fractional frequency instability below 10(−14) to 1 s. This low-noise performance leverages integrated lasers together with an 8-ml vacuum-gap cavity using microfabricated mirrors. All critical components are lithographically defined on planar substrates, holding potential for high-volume manufacturing. Consequently, this work provides an important advance toward compact lasers with hertz linewidths for portable optical clocks, radio frequency photonic oscillators, and related communication and navigation systems.
format Online
Article
Text
id pubmed-9616488
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-96164882022-11-04 Chip-based laser with 1-hertz integrated linewidth Guo, Joel McLemore, Charles A. Xiang, Chao Lee, Dahyeon Wu, Lue Jin, Warren Kelleher, Megan Jin, Naijun Mason, David Chang, Lin Feshali, Avi Paniccia, Mario Rakich, Peter T. Vahala, Kerry J. Diddams, Scott A. Quinlan, Franklyn Bowers, John E. Sci Adv Physical and Materials Sciences Lasers with hertz linewidths at time scales of seconds are critical for metrology, timekeeping, and manipulation of quantum systems. Such frequency stability relies on bulk-optic lasers and reference cavities, where increased size is leveraged to reduce noise but with the trade-off of cost, hand assembly, and limited applications. Alternatively, planar waveguide–based lasers enjoy complementary metal-oxide semiconductor scalability yet are fundamentally limited from achieving hertz linewidths by stochastic noise and thermal sensitivity. In this work, we demonstrate a laser system with a 1-s linewidth of 1.1 Hz and fractional frequency instability below 10(−14) to 1 s. This low-noise performance leverages integrated lasers together with an 8-ml vacuum-gap cavity using microfabricated mirrors. All critical components are lithographically defined on planar substrates, holding potential for high-volume manufacturing. Consequently, this work provides an important advance toward compact lasers with hertz linewidths for portable optical clocks, radio frequency photonic oscillators, and related communication and navigation systems. American Association for the Advancement of Science 2022-10-28 /pmc/articles/PMC9616488/ /pubmed/36306350 http://dx.doi.org/10.1126/sciadv.abp9006 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Guo, Joel
McLemore, Charles A.
Xiang, Chao
Lee, Dahyeon
Wu, Lue
Jin, Warren
Kelleher, Megan
Jin, Naijun
Mason, David
Chang, Lin
Feshali, Avi
Paniccia, Mario
Rakich, Peter T.
Vahala, Kerry J.
Diddams, Scott A.
Quinlan, Franklyn
Bowers, John E.
Chip-based laser with 1-hertz integrated linewidth
title Chip-based laser with 1-hertz integrated linewidth
title_full Chip-based laser with 1-hertz integrated linewidth
title_fullStr Chip-based laser with 1-hertz integrated linewidth
title_full_unstemmed Chip-based laser with 1-hertz integrated linewidth
title_short Chip-based laser with 1-hertz integrated linewidth
title_sort chip-based laser with 1-hertz integrated linewidth
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616488/
https://www.ncbi.nlm.nih.gov/pubmed/36306350
http://dx.doi.org/10.1126/sciadv.abp9006
work_keys_str_mv AT guojoel chipbasedlaserwith1hertzintegratedlinewidth
AT mclemorecharlesa chipbasedlaserwith1hertzintegratedlinewidth
AT xiangchao chipbasedlaserwith1hertzintegratedlinewidth
AT leedahyeon chipbasedlaserwith1hertzintegratedlinewidth
AT wulue chipbasedlaserwith1hertzintegratedlinewidth
AT jinwarren chipbasedlaserwith1hertzintegratedlinewidth
AT kellehermegan chipbasedlaserwith1hertzintegratedlinewidth
AT jinnaijun chipbasedlaserwith1hertzintegratedlinewidth
AT masondavid chipbasedlaserwith1hertzintegratedlinewidth
AT changlin chipbasedlaserwith1hertzintegratedlinewidth
AT feshaliavi chipbasedlaserwith1hertzintegratedlinewidth
AT panicciamario chipbasedlaserwith1hertzintegratedlinewidth
AT rakichpetert chipbasedlaserwith1hertzintegratedlinewidth
AT vahalakerryj chipbasedlaserwith1hertzintegratedlinewidth
AT diddamsscotta chipbasedlaserwith1hertzintegratedlinewidth
AT quinlanfranklyn chipbasedlaserwith1hertzintegratedlinewidth
AT bowersjohne chipbasedlaserwith1hertzintegratedlinewidth