Cargando…

Quantum arbitrary waveform generator

Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary qua...

Descripción completa

Detalles Bibliográficos
Autores principales: Takase, Kan, Kawasaki, Akito, Jeong, Byung Kyu, Kashiwazaki, Takahiro, Kazama, Takushi, Enbutsu, Koji, Watanabe, Kei, Umeki, Takeshi, Miki, Shigehito, Terai, Hirotaka, Yabuno, Masahiro, China, Fumihiro, Asavanant, Warit, Endo, Mamoru, Yoshikawa, Jun-ichi, Furusawa, Akira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616494/
https://www.ncbi.nlm.nih.gov/pubmed/36306354
http://dx.doi.org/10.1126/sciadv.add4019
Descripción
Sumario:Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveforms. We call such a device a quantum arbitrary waveform generator (Q-AWG). The Q-AWG must be able to handle various quantum states of light, which are fragile. Thus, the Q-AWG requires a radically different methodology from classical pulse shaping. Here, we invent an architecture of Q-AWGs that can operate semi-deterministically at a repetition rate over gigahertz in principle. We demonstrate its core technology via generating highly nonclassical states with temporal waveforms that have never been realized before. This result would lead to powerful quantum technologies based on Q-AWGs such as practical optical quantum computing.