Cargando…
Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction
The greatest significant influence on human life span and health is inevitable ageing. One of the distinguishing characteristics of ageing is the gradual decrease of muscle mass and physical function. There has been growing evidence that tocotrienol can guard against age-associated chronic diseases...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616602/ https://www.ncbi.nlm.nih.gov/pubmed/36310588 http://dx.doi.org/10.3389/fmolb.2022.1008908 |
_version_ | 1784820676244275200 |
---|---|
author | Saud Gany, Siti Liyana Tan, Jen Kit Chin, Kok Yong Hakimi, Nur Haleeda Ab Rani, Nazirah Ihsan, Nurhazirah Makpol, Suzana |
author_facet | Saud Gany, Siti Liyana Tan, Jen Kit Chin, Kok Yong Hakimi, Nur Haleeda Ab Rani, Nazirah Ihsan, Nurhazirah Makpol, Suzana |
author_sort | Saud Gany, Siti Liyana |
collection | PubMed |
description | The greatest significant influence on human life span and health is inevitable ageing. One of the distinguishing characteristics of ageing is the gradual decrease of muscle mass and physical function. There has been growing evidence that tocotrienol can guard against age-associated chronic diseases and metabolic disorders. This study aimed to elucidate the effects of tocotrienol-rich fraction (TRF) on muscle metabolomes and metabolic pathways in ageing Sprague Dawley (SD) rats. Three months, 9 months, and 21 months old male SD rats were divided into control and treated groups with 10 rats per group. Rats in control and treated groups were given 60 mg/kg body weight/day of palm olein and 60 mg/kg body weight/day of TRF, respectively, via oral gavage for 3 months. Muscle performance was assessed at 0 and 3 months of treatment by measuring muscle strength and function. Our results showed that TRF treatment caused a significant increase in the swimming time of the young rats. Comparison in the control groups showed that metabolites involved in lipid metabolisms such as L-palmitoyl carnitine and decanoyl carnitine were increased in ageing. In contrast, several metabolites, such as 3-phosphoglyceric acid, aspartic acid and aspartyl phenylalanine were decreased. These findings indicated that muscle metabolomes involved in lipid metabolism were upregulated in aged rats. In contrast, the metabolites involved in energy and amino acid metabolism were significantly downregulated. Comparison in the TRF-supplemented groups showed an upregulation of metabolites involved in energy and amino acid metabolism. Metabolites such as N6-methyl adenosine, spermine, phenylalanine, tryptophan, aspartic acid, histidine, and N-acetyl neuraminic acid were up-regulated, indicating promotion of amino acid synthesis and muscle regeneration. Energy metabolism was also improved in adult and old rats with TRF supplementation as indicated by the upregulation of nicotinamide adenine dinucleotide and glycerol 3-phosphate compared to the control group. In conclusion, the mechanism underlying the changes in skeletal muscle mass and functions in ageing was related to carbohydrate, lipid and amino acid metabolism. Tocotrienol supplementation showed beneficial effects in alleviating energy and amino acid synthesis that may promote the regeneration and renewal of skeletal muscle in ageing rats. |
format | Online Article Text |
id | pubmed-9616602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96166022022-10-29 Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction Saud Gany, Siti Liyana Tan, Jen Kit Chin, Kok Yong Hakimi, Nur Haleeda Ab Rani, Nazirah Ihsan, Nurhazirah Makpol, Suzana Front Mol Biosci Molecular Biosciences The greatest significant influence on human life span and health is inevitable ageing. One of the distinguishing characteristics of ageing is the gradual decrease of muscle mass and physical function. There has been growing evidence that tocotrienol can guard against age-associated chronic diseases and metabolic disorders. This study aimed to elucidate the effects of tocotrienol-rich fraction (TRF) on muscle metabolomes and metabolic pathways in ageing Sprague Dawley (SD) rats. Three months, 9 months, and 21 months old male SD rats were divided into control and treated groups with 10 rats per group. Rats in control and treated groups were given 60 mg/kg body weight/day of palm olein and 60 mg/kg body weight/day of TRF, respectively, via oral gavage for 3 months. Muscle performance was assessed at 0 and 3 months of treatment by measuring muscle strength and function. Our results showed that TRF treatment caused a significant increase in the swimming time of the young rats. Comparison in the control groups showed that metabolites involved in lipid metabolisms such as L-palmitoyl carnitine and decanoyl carnitine were increased in ageing. In contrast, several metabolites, such as 3-phosphoglyceric acid, aspartic acid and aspartyl phenylalanine were decreased. These findings indicated that muscle metabolomes involved in lipid metabolism were upregulated in aged rats. In contrast, the metabolites involved in energy and amino acid metabolism were significantly downregulated. Comparison in the TRF-supplemented groups showed an upregulation of metabolites involved in energy and amino acid metabolism. Metabolites such as N6-methyl adenosine, spermine, phenylalanine, tryptophan, aspartic acid, histidine, and N-acetyl neuraminic acid were up-regulated, indicating promotion of amino acid synthesis and muscle regeneration. Energy metabolism was also improved in adult and old rats with TRF supplementation as indicated by the upregulation of nicotinamide adenine dinucleotide and glycerol 3-phosphate compared to the control group. In conclusion, the mechanism underlying the changes in skeletal muscle mass and functions in ageing was related to carbohydrate, lipid and amino acid metabolism. Tocotrienol supplementation showed beneficial effects in alleviating energy and amino acid synthesis that may promote the regeneration and renewal of skeletal muscle in ageing rats. Frontiers Media S.A. 2022-10-14 /pmc/articles/PMC9616602/ /pubmed/36310588 http://dx.doi.org/10.3389/fmolb.2022.1008908 Text en Copyright © 2022 Saud Gany, Tan, Chin, Hakimi, Ab Rani, Ihsan and Makpol. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Saud Gany, Siti Liyana Tan, Jen Kit Chin, Kok Yong Hakimi, Nur Haleeda Ab Rani, Nazirah Ihsan, Nurhazirah Makpol, Suzana Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction |
title | Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction |
title_full | Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction |
title_fullStr | Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction |
title_full_unstemmed | Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction |
title_short | Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction |
title_sort | untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616602/ https://www.ncbi.nlm.nih.gov/pubmed/36310588 http://dx.doi.org/10.3389/fmolb.2022.1008908 |
work_keys_str_mv | AT saudganysitiliyana untargetedmuscletissuemetabolitesprofilinginyoungadultandoldratssupplementedwithtocotrienolrichfraction AT tanjenkit untargetedmuscletissuemetabolitesprofilinginyoungadultandoldratssupplementedwithtocotrienolrichfraction AT chinkokyong untargetedmuscletissuemetabolitesprofilinginyoungadultandoldratssupplementedwithtocotrienolrichfraction AT hakiminurhaleeda untargetedmuscletissuemetabolitesprofilinginyoungadultandoldratssupplementedwithtocotrienolrichfraction AT abraninazirah untargetedmuscletissuemetabolitesprofilinginyoungadultandoldratssupplementedwithtocotrienolrichfraction AT ihsannurhazirah untargetedmuscletissuemetabolitesprofilinginyoungadultandoldratssupplementedwithtocotrienolrichfraction AT makpolsuzana untargetedmuscletissuemetabolitesprofilinginyoungadultandoldratssupplementedwithtocotrienolrichfraction |