Cargando…
SFA-Net: Scale and Feature Aggregate Network for Retinal Vessel Segmentation
A U-Net-based network has achieved competitive performance in retinal vessel segmentation. Previous work has focused on using multilevel high-level features to improve segmentation accuracy but has ignored the importance of shallow-level features. In addition, multiple upsampling and convolution ope...
Autores principales: | Ni, Jiajia, Liu, Jinhui, Li, Xuefei, Chen, Zhengming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616669/ https://www.ncbi.nlm.nih.gov/pubmed/36312595 http://dx.doi.org/10.1155/2022/4695136 |
Ejemplares similares
-
Pyramid-Net: Intra-layer Pyramid-Scale Feature Aggregation Network for Retinal Vessel Segmentation
por: Zhang, Jiawei, et al.
Publicado: (2021) -
DNL-Net: deformed non-local neural network for blood vessel segmentation
por: Ni, Jiajia, et al.
Publicado: (2022) -
SSCA-Net: Simultaneous Self- and Channel-Attention Neural Network for Multiscale Structure-Preserving Vessel Segmentation
por: Ni, Jiajia, et al.
Publicado: (2021) -
DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images
por: Raza, Mohsin, et al.
Publicado: (2021) -
A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation
por: Yang, Dan, et al.
Publicado: (2020)