Cargando…

Drought-tolerant Sphingobacterium changzhouense Alv associated with Aloe vera mediates drought tolerance in maize (Zea mays)

Drought severity and duration are expected to increase as a result of ongoing global climate change. Therefore, finding solutions to help plants to deal with drought stress and to improve growth in the face of limited water resources is critical. In this study, a drought tolerant- plant growth promo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hagaggi, Noura Sh. A., Abdul-Raouf, Usama M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616765/
https://www.ncbi.nlm.nih.gov/pubmed/36306019
http://dx.doi.org/10.1007/s11274-022-03441-y
Descripción
Sumario:Drought severity and duration are expected to increase as a result of ongoing global climate change. Therefore, finding solutions to help plants to deal with drought stress and to improve growth in the face of limited water resources is critical. In this study, a drought tolerant- plant growth promoting endophytic bacterium was isolated from Aloe vera roots. It was identified as Sphingobacterium changzhouense based on 16S rRNA gene sequencing and was deposited into NCBI database with accession number (ON944028). The effect of S. changzhouense inoculation on maize growth under drought stress was investigated. The results revealed that inoculation significantly (p ≤ 0.05) enhanced root and shoot elongation by 205 and 176.19% respectively. Photosynthesis rate, stomatal conductance and water use efficiency were improved in inoculated plants. interestingly, inoculation resulted in significant increase in total chlorophyll, total carbohydrates, proline, total proteins, total phenolics and total flavonoids by 64, 31.5, 25.1, 75.07, 83.7 and 65.4% respectively. Total antioxidant capacity of inoculated plants (51.2 mg/g FW) was higher than that of non-inoculated plants (11.87 mg/g FW), which was found to be positively correlated to the levels of phenolics and flavonoids. Our finding suggests that S. changzhouense could be used to improve crop growth and assist plants to resist drought stress in arid agricultural lands.