Cargando…
Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline
Single-cell RNA-sequencing (scRNA-seq) offers functional insight into complex biology, allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution. Here, we introduce scPipeline, a single-cell data analysis toolbox that builds on existing methods and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616830/ https://www.ncbi.nlm.nih.gov/pubmed/36307536 http://dx.doi.org/10.1038/s42003-022-04093-2 |
Sumario: | Single-cell RNA-sequencing (scRNA-seq) offers functional insight into complex biology, allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution. Here, we introduce scPipeline, a single-cell data analysis toolbox that builds on existing methods and offers modular workflows for multi-level cellular annotation and user-friendly analysis reports. Advances to scRNA-seq annotation include: (i) co-dependency index (CDI)-based differential expression, (ii) cluster resolution optimization using a marker-specificity criterion, (iii) marker-based cell-type annotation with Miko scoring, and (iv) gene program discovery using scale-free shared nearest neighbor network (SSN) analysis. Both unsupervised and supervised procedures were validated using a diverse collection of scRNA-seq datasets and illustrative examples of cellular transcriptomic annotation of developmental and immunological scRNA-seq atlases are provided herein. Overall, scPipeline offers a flexible computational framework for in-depth scRNA-seq analysis. |
---|