Cargando…

How dynamic adsorption controls surfactant-enhanced boiling

Improving boiling is challenging due to the unpredictable nature of bubbles. One way to enhance boiling is with surfactants, which alter the solid–liquid and liquid–vapor interfaces. The conventional wisdom established by previous studies suggests that heat transfer enhancement is optimized near the...

Descripción completa

Detalles Bibliográficos
Autores principales: Mata, Mario R., Ortiz, Brandon, Luhar, Dhruv, Evereux, Vesper, Cho, H. Jeremy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616907/
https://www.ncbi.nlm.nih.gov/pubmed/36307430
http://dx.doi.org/10.1038/s41598-022-21313-1
Descripción
Sumario:Improving boiling is challenging due to the unpredictable nature of bubbles. One way to enhance boiling is with surfactants, which alter the solid–liquid and liquid–vapor interfaces. The conventional wisdom established by previous studies suggests that heat transfer enhancement is optimized near the critical micelle concentration (CMC), which is an equilibrium property that depends on surfactant type. However, these studies only tested a limited number of surfactants over small concentration ranges. Here, we test a larger variety of nonionic and anionic surfactants over the widest concentration range and find that a universal, optimal concentration range exists, irrespective of CMC. To explain this, we show that surfactant-enhanced boiling is controlled by two competing phenomena: (1) the dynamic adsorption of surfactants to the interfaces and (2) the increase in liquid dynamic viscosity at very high surfactant concentrations. This dynamic adsorption is time-limited by the millisecond-lifetime of bubbles on the boiling surface—much shorter than the timescales required to see equilibrium behaviors such as CMC. At very high concentrations, increased viscosity inhibits rapid bubble growth, reducing heat transfer. We combine the effects of adsorption and viscosity through a simple proportionality, providing a succinct and useful understanding of this enhancement behavior for boiling applications.