Cargando…
The development of an automated machine learning pipeline for the detection of Alzheimer’s Disease
Although Alzheimer’s disease is the most prevalent form of dementia, there are no treatments capable of slowing disease progression. A lack of reliable disease endpoints and/or biomarkers contributes in part to the absence of effective therapies. Using machine learning to analyze EEG offers a possib...
Autores principales: | Chedid, Nicholas, Tabbal, Judie, Kabbara, Aya, Allouch, Sahar, Hassan, Mahmoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616932/ https://www.ncbi.nlm.nih.gov/pubmed/36307518 http://dx.doi.org/10.1038/s41598-022-22979-3 |
Ejemplares similares
-
Dynamic rewiring of electrophysiological brain networks during learning
por: Ruggeri, Paolo, et al.
Publicado: (2023) -
Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP)
por: Jubery, Talukder Zaki, et al.
Publicado: (2021) -
A novel cascade machine learning pipeline for Alzheimer’s disease identification and prediction
por: Zhou, Kun, et al.
Publicado: (2023) -
mAML: an automated machine learning pipeline with a microbiome repository for human disease classification
por: Yang, Fenglong, et al.
Publicado: (2020) -
Building Machine Learning Pipelines
por: Hapke, Hannes
Publicado: (2020)