Cargando…

COVID-19 spatialization by empirical Bayesian model in São Paulo, Brazil

The new Acute Respiratory Syndrome, COVID-19, has affected the health and the economy worldwide. Therefore, scientists have been looking for ways to understand this disease. In this context, the main objective of this study was the spatialization of COVID-19, thinking in distinguishing areas with hi...

Descripción completa

Detalles Bibliográficos
Autores principales: Vanderley-Silva, Ivan, Valente, Roberta Averna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617034/
https://www.ncbi.nlm.nih.gov/pubmed/36340743
http://dx.doi.org/10.1007/s10708-022-10780-8
Descripción
Sumario:The new Acute Respiratory Syndrome, COVID-19, has affected the health and the economy worldwide. Therefore, scientists have been looking for ways to understand this disease. In this context, the main objective of this study was the spatialization of COVID-19, thinking in distinguishing areas with high transmissibility yet, verifying if these areas were associated with the elderly population occurrence. The work was delineated, supposing that spatialization could support the decision-making to combat the outbreak and that the same method could be used for spatialization and prevent other diseases. The study area was a municipality near Sao Paulo Metropolis, one of Brazil's main disease epicenters. Using official data and an empirical Bayesian model, we spatialized people infected by region, including older people, obtaining reasonable adjustment. The results showed a weak correlation between regions infected and older adults. Thus, we define a robust model that can support the definition of actions aiming to control the COVID-19 spread.