Cargando…
Identifying Patients With Heart Failure Who Are Susceptible to De Novo Acute Kidney Injury: Machine Learning Approach
BACKGROUND: Studies have shown that more than half of patients with heart failure (HF) with acute kidney injury (AKI) have newonset AKI, and renal function evaluation markers such as estimated glomerular filtration rate are usually not repeatedly tested during the hospitalization. As an independent...
Autores principales: | Hong, Caogen, Sun, Zhoujian, Hao, Yuzhe, Dong, Zhanghuiya, Gu, Zhaodan, Huang, Zhengxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617187/ https://www.ncbi.nlm.nih.gov/pubmed/36240002 http://dx.doi.org/10.2196/37484 |
Ejemplares similares
-
Comparing Machine Learning Models and Statistical Models for Predicting Heart Failure Events: A Systematic Review and Meta-Analysis
por: Sun, Zhoujian, et al.
Publicado: (2022) -
Utilizing dynamic treatment information for MACE prediction of acute coronary syndrome
por: Duan, Huilong, et al.
Publicado: (2019) -
Treatment patterns of patients with acute heart failure who develop acute kidney injury
por: Boulos, Jubran, et al.
Publicado: (2018) -
Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure
por: Templeton, Evelyn M., et al.
Publicado: (2022) -
A Machine Learning-Based Prediction Model for Acute Kidney Injury in Patients With Congestive Heart Failure
por: Peng, Xi, et al.
Publicado: (2022)