Cargando…
Long noncoding RNA IRF1-AS is associated with peste des petits ruminants infection
Peste des petits ruminants (PPR) is an acute and highly contagious disease and has long been a significant threat to small ruminant productivity worldwide. However, the molecular mechanism underlying host-PPRV interactions remains unclear and the long noncoding RNAs (lncRNAs) regulation of PPR virus...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617334/ https://www.ncbi.nlm.nih.gov/pubmed/36307867 http://dx.doi.org/10.1186/s13567-022-01105-1 |
Sumario: | Peste des petits ruminants (PPR) is an acute and highly contagious disease and has long been a significant threat to small ruminant productivity worldwide. However, the molecular mechanism underlying host-PPRV interactions remains unclear and the long noncoding RNAs (lncRNAs) regulation of PPR virus (PPRV) infection has rarely been reported so far. Here, we first demonstrated that PPRV infection can induce an obvious innate immune response in caprine endometrial epithelial cells (EECs) at 48 h post-infection (hpi) with an MOI of 3. Subsequently, we determined that PPRV infection is associated with 191 significantly differentially expressed (SDE) lncRNAs, namely, 137 upregulated and 54 downregulated lncRNAs, in caprine EECs compared with mock control cells at 48 hpi by using deep sequencing technology. Importantly, bioinformatics preliminarily analyses revealed that these DE lncRNAs were closely related to the immune response. Furthermore, we identified a system of lncRNAs related to the immune response and focused on the role of lncRNA 10636385 (IRF1-AS) in regulating the innate immune response. Interestingly, we found that IRF1-AS was a potent positive regulator of IFN-β and ISG production, which can significantly inhibit PPRV replication in host cells. In addition, our data revealed that IRF1-AS was positively correlated with its potential target gene, IRF1, which enhanced the activation of IRF3 and the expression of ISGs and interacted with IRF3. This study suggests that IRF1-AS could be a new host factor target for developing antiviral therapies against PPRV infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13567-022-01105-1. |
---|