Cargando…
Predicting risk of sepsis, comparison between machine learning methods: a case study of a Virginia hospital
Sepsis is an inflammation caused by the body's systemic response to an infection. The infection could be a result of many diseases, such as pneumonia, urinary tract infection, and other illnesses. Some of its symptoms are fever, tachycardia, tachypnea, etc. Unfortunately, sepsis remains a criti...
Autores principales: | Barghi, Behrad, Azadeh-Fard, Nasibeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617383/ https://www.ncbi.nlm.nih.gov/pubmed/36307887 http://dx.doi.org/10.1186/s40001-022-00843-4 |
Ejemplares similares
-
Identifying and ranking risks using combined FMEA-TOPSIS method for new product development in the dairy industry and offering mitigation strategies: case study of Ramak Company
por: Sharifi, Farzad, et al.
Publicado: (2022) -
Can a Patient’s In-Hospital Length of Stay and Mortality Be Explained by Early-Risk Assessments?
por: Azadeh-Fard, Nasibeh, et al.
Publicado: (2016) -
Comparison between machine learning methods for mortality prediction for sepsis patients with different social determinants
por: Wang, Hanyin, et al.
Publicado: (2022) -
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU
por: Kong, Guilan, et al.
Publicado: (2020) -
Using a Motion Sensor to Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach
por: Abdollahi, Masoud, et al.
Publicado: (2020)