Cargando…
Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4
Traffic sign detection is a challenging problem in the field of unmanned driving, particularly important in complex environments. We propose a method, based on the improved You only look once (YOLO) v4, to detect and recognize multiscale traffic signs in complex environments. This method employs an...
Autores principales: | Wang, Yongjie, Bai, Miaoyuan, Wang, Mingzhi, Zhao, Fengfeng, Guo, Jifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617714/ https://www.ncbi.nlm.nih.gov/pubmed/36317077 http://dx.doi.org/10.1155/2022/5297605 |
Ejemplares similares
-
Improved YOLOv5-based for small traffic sign detection under complex weather
por: Qu, Shenming, et al.
Publicado: (2023) -
Traffic Sign Recognition Based on the YOLOv3 Algorithm
por: Gong, Chunpeng, et al.
Publicado: (2022) -
A Small Object Detection Algorithm for Traffic Signs Based on Improved YOLOv7
por: Li, Songjiang, et al.
Publicado: (2023) -
Traffic sign classification using CNN and detection using faster-RCNN and YOLOV4
por: Youssouf, Njayou
Publicado: (2022) -
IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments
por: Qiu, Yongsheng, et al.
Publicado: (2023)