Cargando…
Signal intensity informed multi‐coil encoding operator for physics‐guided deep learning reconstruction of highly accelerated myocardial perfusion CMR
PURPOSE: To develop a physics‐guided deep learning (PG‐DL) reconstruction strategy based on a signal intensity informed multi‐coil (SIIM) encoding operator for highly‐accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR). METHODS: First‐pass perfusion CMR acquires highly‐a...
Autores principales: | Demirel, Omer Burak, Yaman, Burhaneddin, Shenoy, Chetan, Moeller, Steen, Weingärtner, Sebastian, Akçakaya, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617789/ https://www.ncbi.nlm.nih.gov/pubmed/36128896 http://dx.doi.org/10.1002/mrm.29453 |
Ejemplares similares
-
Multi‐mask self‐supervised learning for physics‐guided neural networks in highly accelerated magnetic resonance imaging
por: Yaman, Burhaneddin, et al.
Publicado: (2022) -
High-fidelity Database-free Deep Learning Reconstruction for Real-time Cine Cardiac MRI
por: Demirel, Ömer Burak, et al.
Publicado: (2023) -
Improved Simultaneous Multi-slice imaging with Composition of k-space Interpolations (SMS-COOKIE) for myocardial T(1) mapping
por: Demirel, Ömer Burak, et al.
Publicado: (2023) -
Free‐breathing simultaneous T
(1), T
(2), and T
(2)
(∗) quantification in the myocardium
por: Hermann, Ingo, et al.
Publicado: (2021) -
Revisiting [Formula: see text]-wavelet compressed-sensing MRI in the era of deep learning
por: Gu, Hongyi, et al.
Publicado: (2022)