Cargando…
In-sensor neural network for high energy efficiency analog-to-information conversion
This work presents an on-chip analog-to-information conversion technique that utilizes analog hyper-dimensional computing based on reservoir-computing paradigm to process electrocardiograph (ECG) signals locally in-sensor and reduce radio frequency transmission by more than three orders-of-magnitude...
Autores principales: | Sadasivuni, Sudarsan, Bhanushali, Sumukh Prashant, Banerjee, Imon, Sanyal, Arindam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617885/ https://www.ncbi.nlm.nih.gov/pubmed/36309584 http://dx.doi.org/10.1038/s41598-022-23100-4 |
Ejemplares similares
-
Fusion of fully integrated analog machine learning classifier with electronic medical records for real-time prediction of sepsis onset
por: Sadasivuni, Sudarsan, et al.
Publicado: (2022) -
Energy-based analog neural network framework
por: Watfa, Mohamed, et al.
Publicado: (2023) -
Analog-to-Information Conversion with Random Interval Integration
por: Šaliga, Ján, et al.
Publicado: (2021) -
Throughput and Energy Efficiency of a Cooperative Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks
por: Ghosh, Arindam, et al.
Publicado: (2013) -
Configurable analog-digital conversion using the neural engineering framework
por: Mayr, Christian G., et al.
Publicado: (2014)