Cargando…

G(i/o) protein-coupled receptor inhibition of beta-cell electrical excitability and insulin secretion depends on Na(+)/K(+) ATPase activation

G(i/o)-coupled somatostatin or α2-adrenergic receptor activation stimulated β-cell NKA activity, resulting in islet Ca(2+) fluctuations. Furthermore, intra-islet paracrine activation of β-cell G(i/o)-GPCRs and NKAs by δ-cell somatostatin secretion slowed Ca(2+) oscillations, which decreased insulin...

Descripción completa

Detalles Bibliográficos
Autores principales: Dickerson, Matthew T., Dadi, Prasanna K., Zaborska, Karolina E., Nakhe, Arya Y., Schaub, Charles M., Dobson, Jordyn R., Wright, Nicole M., Lynch, Joshua C., Scott, Claire F., Robinson, Logan D., Jacobson, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617941/
https://www.ncbi.nlm.nih.gov/pubmed/36309517
http://dx.doi.org/10.1038/s41467-022-34166-z
Descripción
Sumario:G(i/o)-coupled somatostatin or α2-adrenergic receptor activation stimulated β-cell NKA activity, resulting in islet Ca(2+) fluctuations. Furthermore, intra-islet paracrine activation of β-cell G(i/o)-GPCRs and NKAs by δ-cell somatostatin secretion slowed Ca(2+) oscillations, which decreased insulin secretion. β-cell membrane potential hyperpolarization resulting from G(i/o)-GPCR activation was dependent on NKA phosphorylation by Src tyrosine kinases. Whereas, β-cell NKA function was inhibited by cAMP-dependent PKA activity. These data reveal that NKA-mediated β-cell membrane potential hyperpolarization is the primary and conserved mechanism for G(i/o)-GPCR control of electrical excitability, Ca(2+) handling, and insulin secretion.