Cargando…
Application of Machine Learning for Clinical Subphenotype Identification in Sepsis
INTRODUCTION: Sepsis is a heterogeneous clinical syndrome. Identification of sepsis subphenotypes could lead to allowing more precise therapy. However, there is a lack of models to identify the subphenotypes in such patients. Thus, we aimed to identify possible subphenotypes and compare the clinical...
Autores principales: | Hu, Chang, Li, Yiming, Wang, Fengyun, Peng, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Healthcare
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617989/ https://www.ncbi.nlm.nih.gov/pubmed/36006560 http://dx.doi.org/10.1007/s40121-022-00684-y |
Ejemplares similares
-
Sepsis-induced Coagulopathy Subphenotype Identification by Latent Class Analysis
por: Cai, Dan, et al.
Publicado: (2023) -
Adherence to the Prevailing Sepsis Definition Is Quintessential to Subphenotype Identification
por: Maitra, Souvik, et al.
Publicado: (2020) -
Sepsis subphenotyping based on organ dysfunction trajectory
por: Xu, Zhenxing, et al.
Publicado: (2022) -
Application of interpretable machine learning for early prediction of prognosis in acute kidney injury
por: Hu, Chang, et al.
Publicado: (2022) -
Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission
por: Hu, Chang, et al.
Publicado: (2022)